domingo, 30 de mayo de 2010

Superconducting magnet

sábado 29 de mayo de 2010

Superconducting magnet

Superconducting magnet
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. The tradeoff for the work done to keep constant cryogenic temperatures for the magnet is that the magnetic flux is much stronger than ordinary iron-core electromagnets, and overall it can be cheaper because no energy is lost to heat resistance during use.

During operation, the magnet windings must be cooled below their critical temperature; the temperature at which the winding material changes from the normal resistive state and becomes a superconductor. Liquid helium is used as a coolant for most superconductive windings, even those with critical temperatures far above its boiling point of 4.2 K. This is because the lower the temperature, the better superconductive windings work - the higher the currents and magnetic fields they can stand without returning to their nonsuperconductive state. The magnet and coolant are contained in a thermally insulated container (dewar) called a cryostat. To keep the helium from boiling away, the cryostat is usually constructed with an outer jacket containing (significantly cheaper) liquid nitrogen at 77 K. One of the goals of the search for high temperature superconductors is to build magnets that can be cooled by liquid nitrogen alone. At temperatures above about 20 K cooling can be achieved without boiling off cryogenic liquids.

Schematic of a 20 tesla superconducting magnet with vertical bore

The maximum magnetic field achievable in a superconducting magnet is limited by the field at which the winding material ceases to be superconducting, its 'critical field', Hc, which for type-II superconductors is its upper critical field. Another limiting factor is the 'critical current', Ic at which the winding material also ceases to be superconducting. Advances in magnets have focused on creating better winding materials.
The superconducting portions of most current magnets are composed of niobium-titanium. This material has critical temperature of 10 kelvins and can superconduct at up to about 15 teslas. More expensive magnets can be made of niobium-tin (Nb3Sn). These have a Tc of 18 K. When operating at 4.2 K they are able to withstand a much higher magnetic field intensity, up to 25 to 30 teslas. Unfortunately, it is far more difficult to make the required filaments from this material. This is why sometimes a combination of Nb3Sn for the high field sections and Nb3Ti for the lower field sections is used. Vanadium-gallium is another material used for the high field inserts.
High temperature superconductors (eg. BSCCO or YBCO) may be used for high-field inserts when magnetic fields are required which are higher than Nb3Sn can manage.BSCCO, YBCO or magnesium diboride may also be used for current leads, conducting high currents from room temperature into the cold magnet without an accompanying large heat leak from resistive leads.

Coil windings
The coil windings of a superconducting magnet are made of wires or tapes of Type II superconductors (e.g.niobium-titanium or niobium-tin). The wire or tape itself may be made of tiny filaments (about 20 micrometers thick) of superconductor in a copper matrix. The copper is needed to add mechanical stability, and to provide a low resistance path for the large currents in case the temperature rises above Tc or the current rises above Ic and superconductivity is lost. These filaments need to be this small because in this type of superconductor the current only flows skin-deep. The coil must be carefully designed to withstand (or counteract) magnetic pressure and Lorentz forces that could otherwise cause wire fracture or crushing of insulation between adjacent turns.

Power supply
The current to the coil windings is provided by a high current, very low voltage DC power supply, since in steady state the only voltage across the magnet is due to the resistance of the feeder wires. Any change to the current through the magnet must be done very slowly, first because electrically the magnet is a large inductor and an abrupt current change will result in a large voltage spike across the windings, and more importantly because fast changes in current can cause eddy currents and mechanical stresses in the windings that can precipitate a quench (see below). So the power supply is usually microprocessor-controlled, programmed to accomplish current changes gradually, in gentle ramps. It usually takes several minutes to energize or de-energize a laboratory-sized magnet.

7 T horizontal bore superconducting magnet, part of a mass spectrometer. The magnet itself is inside the cylindrical cryostat.

Persistent mode
An alternate operating mode, once the magnet has been energized, is to short-circuit the windings with a piece of superconductor. The windings become a closed superconducting loop, the power supply can be turned off, and persistent currents will flow for months, preserving the magnetic field. The advantage of this persistent mode is that stability of the magnetic field is better than is achievable with the best power supplies, and no energy is needed to power the windings. The short circuit is made by a 'persistent switch', a piece of superconductor inside the magnet connected across the winding ends, attached to a small heater. In normal mode, the switch wire is heated above its transition temperature, so it is resistive. Since the winding itself has no resistance, no current flows through the switch wire. To go to persistent mode, the current is adjusted until the desired magnetic field is obtained, then the heater is turned off. The persistent switch cools to its superconducting temperature, short circuiting the windings. The current and the magnetic field will not actually persist forever, but will decay slowly according to a normal L/R time constant:
where  is a small residual resistance in the superconducting windings due to joints or a phenomenon called flux motion resistance. Nearly all commercial superconducting magnets are equipped with persistent switches.

Magnet quench
A quench is an abnormal termination of magnet operation that occurs when part of the superconducting coil enters the normal (resistive) state. This can occur because the field inside the magnet is too large, the rate of change of field is too large (causing eddy currents and resultant heating in the copper support matrix), or a combination of the two. More rarely a defect in the magnet can cause a quench. When this happens, that particular spot is subject to rapid Joule heating, which raises the temperature of the surrounding regions. This pushes these into the normal state as well, which leads to more heating in a chain reaction. The entire magnet rapidly becomes normal (this can take several seconds, depending on the size of the superconducting coil). This is accompanied by a loud bang as the energy in the magnetic field is converted to heat, and rapid boil-off of the cryogenic fluid. The abrupt decrease of current can result in kilovolt inductive voltage spikes and arcing. Permanent damage to the magnet is rare, but components can be damaged by localised heating or large mechanical forces. Practical magnets usually have safety devices to remove the current or limit it when the beginning of a quench is detected. If a large magnet undergoes a quench, the inert vapor formed by the evaporating cryogenic fluid can present a significant asphyxiation hazard to operators by displacing breathable air. A large section of the superconducting magnets in CERN's Large Hadron Collider unexpectedly quenched during start-up operations in 2008, necessitating a replacement of a number of magnets.

Although the idea of making electromagnets with superconducting wire was proposed by Heike Kamerlingh Onnes shortly after he discovered superconductivity in 1911, a practical superconducting electromagnet had to await the discovery of type-II superconductors that could stand high magnetic fields. The first successful superconducting magnet was built by George Yntema in 1954 using niobium wire and achieved a field of 0.71 T at 4.2 K. Widespread interest was sparked by Kunzler's 1961 discovery of the advantages of niobium-tin as a high Hc, high current winding material.
In 1986, the discovery of high temperature superconductors by Georg Bednorz and Karl Muller energized the field, raising the possibility of magnets that could by cooled by liquid nitrogen instead of the more difficult to work with helium.
In 2007 a magnet with windings of YBCO achieved a world record field of 26.8 teslas. The US National Research Council has a goal of creating a 30 tesla superconducting magnet.

An MRI machine that uses a superconducting magnet. The magnet is inside the doughnut-shaped housing, and can create a 3 tesla field inside the central hole.
Superconducting magnets have a number of advantages over resistive electromagnets. They can achieve an order of magnitude stronger field than ordinary ferromagnetic-core electromagnets, which are limited to fields of around 2 T. The field is generally more stable, resulting in less noisy measurements. They can be smaller, and the area at the center of the magnet where the field is created is empty rather than being occupied by an iron core. Most importantly, for large magnets they can consume much less power. In the persistent state (above), the only power the magnet consumes is that needed for any refrigeration equipment to preserve the cryogenic temperature. Higher fields, however can be achieved with special cooled resistive electromagnets, as superconducting coils will enter the normal (non-superconducting) state (see quench, above) at high fields.
Superconducting magnets are widely used in MRI machines, NMR equipment, mass spectrometers, magnetic separation processes, and particle accelerators.
One of the most challenging use of SC magnets is in the LHC particle accelerator . The niobium-titanium (Nb-Ti) magnets operate at 1.9 K to allow them to run safely at 8.3 T. Each magnet stores 7 MJ. In total the magnets store 10.4 GJ. Once or twice a day, as the protons are accelerated from 450 GeV to 7 TeV, the field of the superconducting bending magnets will be increased from 0.54 T to 8.3 T.
The central solenoid and toroidal field superconducting magnets designed for the ITER fusion reactor use niobium-tin (Nb3Sn) as a superconductor. The Central Solenoid coil will carry 46 kA and produce a field of 13.5 teslas. The 18 Toroidal Field coils at max field of 11.8 T will store 41 GJ (total?). They have been tested at a record 80 kA. Other lower field ITER magnets (PF and CC) will use niobium-titanium. Most of the ITER magnets will have their field varied many times per hour.

An MRI machine that uses a superconducting magnet. The magnet is inside the doughnut-shaped housing, and can create a 3 tesla field inside the central hole.ctor use niobium-tin (Nb3Sn) as a superconductor. The Central Solenoid coil will carry 46 kA and produce a field of 13.5 teslas. The 18 Toroidal Field coils at max field of 11.8 T will store 41 GJ (total?). They have been tested at a record 80 kA. Other lower field ITER magnets (PF and CC) will use niobium-titanium. Most of the ITER magnets will have their field varied many times per hour

Omar Caballero
CI 20060259
ees seccion 1

Record mundial de intensidad de corriente con un cable de distribución eléctrica

Investigadores de la Universidad Autònoma de Barcelona, del ICMAB-CSIC y de las empresas Labein Tecnalia y Nexans, coordinados por Endesa, han construido el cable para transporte de electricidad más avanzado y potente del mundo. Se trata de un primer prototipo de 30 metros construido con material superconductor. El nuevo cable ha batido el récord mundial de intensidad de corriente, 3200 Amperios rms, puede transportar una potencia eléctrica 5 veces superior a la de un cable convencional de cobre de las mismas dimensiones, y reducirá hasta en un 70% las pérdidas de energía de la red eléctrica.

Investigadores de la Universidad Autónoma de Barcelona, del ICMAB-CSIC, y de las empresas Labein Tecnalia y Nexans, coordinados por Endesa, han fabricado un cable de 30m de longitud, junto con sus terminales de conexión a la red, con un material superconductor de alta temperatura llamado BSCCO. Se trata del cable más avanzado del mundo a nivel de distribución (24kV), ya que acepta el valor más elevado de corriente que se ha obtenido hasta ahora, 3200 Amperios rms y, por lo tanto, puede transportar una potencia eléctrica de 110 MVA, unas 5 veces superior a la de un cable convencional de cobre de las mismas dimensiones.

El proyecto de cable superconductor de electricidad podría reducir las pérdidas de energía en un 50% e, incluso, en un 70% en algunos tramos de la red de distribución. Esta reducción de pérdidas implica un ahorro energético y una reducción significativa de emisión de CO2, según la distribución actual en la generación del sistema eléctrico español.

El hecho de que la tecnología superconductora permita transportar mucha más corriente eléctrica que los sistemas convencionales, la convierte en una alternativa viable a las necesidades de eficiencia del sistema eléctrico mundial, que canaliza actualmente el 40% del consumo de energía total. Se prevé que la demanda de energía del mundo se habrá duplicado hacia la mitad de este siglo. De este modo, los motores, los generadores, los transformadores y los cables superconductores, al ser más eficientes, permitirían satisfacer este incremento de la demanda energética a la vez que disminuirían la emisión de gases de efecto invernadero.

De hecho, el transporte de corriente eléctrica con materiales superconductores tiene importantes efectos para el medio ambiente, ya que permitirá reducir las emisiones globales de gases de efecto invernadero, aunque aumenten tanto la población mundial como el consumo de energía per capita, sobretodo en los países en vías de desarrollo. Se estima que el uso de sistemas eléctricos superconductores podría reducir fácilmente entre un 10 y un 15% el consumo de energía primaria sin reducir el consumo final de los usuarios. Esto es así porque, actualmente, se desaprovecha un 60% de la energía que se produce y, por lo tanto, hay mucho camino a recorrer para mejorar la eficiencia energética. Si Catalunya implementase de manera generalizada la tecnología superconductora, podría evitar, cada año, la emisión de más de 500.000 toneladas de óxidos de carbono.

La tecnología basada en materiales superconductores incrementa también la seguridad y la fiabilidad de las instalaciones de la red de distribución, ya que los transformadores son no inflamables. Además, se pueden instalar limitadores de corriente mucho más rápidos que incrementan el control de la red.

En el proyecto han participado los investigadores del Departamento de Física de la UAB Àlvar Sánchez, Carles Navau, Núria del Valle y Chen Du-Xing. El coordinador científico del proyecto ha sido Xavier Obradors, investigador del Institut de Ciència de Materials de Barcelona (ICMAB-CISC), en el Parc de Recerca UAB.

Asignatura: C.R.F.

Un amplificador empuja los límites de la física cuántica y El Superconductor Más Pequeño del Mundo

Si los nuevos y potentes computadores cuánticos quieren alcanzar ese enorme potencial, necesitarán amplificadores capaces de transmitir señales tan débiles que consten de un único fotón. En la edición del 6 de mayo de la revista Nature, un equipo de científicos de Yale informa de haber creado un amplificador casi tan eficiente como permiten las leyes de la física cuántica.

Los computadores cuánticos, como los teléfonos móviles, dependen de sofisticados amplificadores de microondas que aseguran que la información se recupera de forma precisa. No obstante, todos los amplificadores contienen fallos inherentes – más notablemente los fallos que produce el ruido aleatorio que puede oscurecer la señal. En la mecánica cuántica, el principio de incertidumbre de Heisenberg dicta que una pequeña cantidad de ruido es inevitable, no importa lo bueno que sea el amplificador.

"Si quieres sacar información del ordenador, tienes que amplificar señales muy débiles", dice Michel Devoret, Frederick Profesor William Beinecke de Física y Física Aplicada en la Escuela de Ingeniería y Ciencia Aplicada de Yale y autor senior del artículo. "El objetivo de nuestra investigación es idear un amplificador para señales tan diminutas que sólo tengan un fotón".

"Michel y su equipo han desarrollado un nuevo diseño para un amplificador práctico usando en circuitos eléctricos superconductores a temperaturas criogénicas que están muy cerca del límite ideal de esta mínima cantidad de ruido añadido", dice Steven M. Girvin, vicedecano de ciencia y tecnología; Profesor Eugene Higgins de Física y Física Aplicada en la Escuela de Ingeniería y Ciencia Aplicada de Yale y coautor del trabajo.

El esfuerzo de Yale por construir un ordenador cuántico basado en circuitos eléctricos superconductores depende de señales de microondas increíblemente débiles que controlan y miden el estado cuántico del ordenador La típica señal de potencia que debe medirse es del orden de una trillonésima de vatio, equivalente a la potencia de la señal recibida por una llamada a un teléfono móvil desde la Luna a alguien en la Tierra.

El Superconductor Más Pequeño del Mundo

Un equipo de científicos ha descubierto el superconductor más pequeño del mundo, una lámina de cuatro pares de moléculas de menos de un nanómetro. El estudio proporciona la primera evidencia de que es posible fabricar cables superconductores moleculares a escala nanométrica que podrían ser usados para dispositivos electrónicos nanométricos y en ciertos sistemas de transmisión de energía.

Se ha determinado que es casi imposible realizar interconexiones a escala nanométrica usando conductores metálicos porque la resistencia aumenta conforme el tamaño del cable disminuye. Los nanocables se calientan hasta tal punto que se pueden fundir. Ese problema ha sido un gran impedimento para el desarrollo de nanodispositivos que resulten prácticos de usar.

Los materiales superconductores no experimentan resistencia eléctrica y pueden conducir grandes corrientes eléctricas sin la disipación de potencia ni la generación de calor que sí afectan a los conductores convencionales.

La superconductividad fue descubierta en 1911, y hasta fechas recientes fue considerada un fenómeno macroscópico. Sin embargo, el nuevo hallazgo sugiere que existe en la escala molecular, por lo que se abre un nuevo campo para estudiar este fenómeno. Actualmente, los superconductores se usan en aplicaciones que van desde las supercomputadoras hasta los dispositivos para captación de imágenes del cerebro.

En el nuevo estudio, el equipo del físico Saw-Wai Hla de la Universidad de Ohio examinó moléculas sintetizadas de un tipo de sal orgánica, ubicadas sobre una superficie de plata. Usando espectroscopia de Efecto Túnel, los científicos observaron la superconductividad en cadenas moleculares de varias longitudes. En las cadenas por debajo de los 50 nanómetros de longitud, la superconductividad disminuía cuando las cadenas se hacían más cortas. Sin embargo, los investigadores aún fueron capaces de observar el fenómeno en cadenas tan pequeñas como de cuatro pares de moléculas o 3,5 nanómetros de longitud.

Para observar la superconductividad a esta escala, los científicos necesitaron enfriar las moléculas hasta una temperatura del orden de los 260 grados centígrados bajo cero. Las temperaturas más calientes redujeron la actividad.

En estudios futuros, los científicos podrán poner a prueba materiales de diversas clases, a fin de hallar alguno con el que fabricar cables nanométricos que sean superconductores a temperaturas más altas.

Asignatura: C.R.F.


Se denomina superconductividad a la capacidad intrínseca que poseen ciertos materiales para conducir corriente eléctrica sin resistencia y pérdida de energía nulas en determinadas condiciones.

La resistividad eléctrica de un conductor metálico disminuye gradualmente a medida que la temperatura se reduce. Sin embargo, en los conductores ordinarios, como el cobre y la plata, las impurezas y otros defectos producen un valor límite. Incluso cerca de cero absoluto una muestra de cobre muestra una resistencia no nula. La resistencia de un superconductor, en cambio, desciende bruscamente a cero cuando el material se enfría por debajo de su temperatura crítica. Una corriente eléctrica que fluye en una espiral de cable superconductor puede persistir indefinidamente sin fuente de alimentación. Al igual que el ferromagnetismo y las líneas espectrales atómicas, la superconductividad es un fenómeno de la mecánica cuántica.

La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metales nobles como el oro y la plata, ni en la mayoría de los metales ferromagnéticos.

Comportamiento magnético

Aunque la propiedad más sobresaliente de los superconductores es la ausencia de resistencia, lo cierto es que no podemos decir que se trate de un material de conductividad infinita, ya que este tipo de material por sí sólo no tiene sentido termodinámico. En realidad un material superconductor es perfectamente diamagnético. Esto hace que no permita que penetre el campo, lo que se conoce como efecto Meissner.

El campo magnético distingue dos tipos de superconductores: los de tipo I, que no permiten en absoluto que penetre un campo magnético externo (lo cual conlleva un esfuerzo energético alto, e implica la ruptura brusca del estado superconductor si se supera la temperatura crítica), y los de tipo II, que son superconductores imperfectos, en el sentido en que el campo realmente penetra a través de pequeñas canalizaciones denominadas vórtices de Abrikosov, o fluxones. Estos dos tipos de superconductores son de hecho dos fases diferentes que fueron predichas por Lev Davidovich Landau y Aleksey Alekséyevich Abrikósov.

Cuando a un superconductor aplicamos un campo magnético externo débil lo repele perfectamente. Si lo aumentamos, el sistema se vuelve inestable y prefiere introducir vórtices para disminuir su energía. Éstos van aumentando en número colocándose en redes de vórtices que pueden ser observados mediante técnicas adecuadas. Cuando el campo es suficientemente alto, el número de defectos es tan alto que el material deja de ser superconductor. Éste es el campo crítico que hace que un material deje de ser superconductor y que depende de la temperatura.

Comportamiento eléctrico

La aparición del superdiamagnetismo es debida a la capacidad del material de crear supercorrientes. Éstas son corrientes de electrones que no disipan energía, de manera que se pueden mantener eternamente sin obedecer el Efecto Joule de pérdida de energía por generación de calor. Las corrientes crean el intenso campo magnético necesario para sustentar el efecto Meissner. Estas mismas corrientes permiten transmitir energía sin gasto energético, lo que representa el efecto más espectacular de este tipo de materiales. Debido a que la cantidad de electrones superconductores es finita, la cantidad de corriente que puede soportar el material es limitada. Por tanto, existe una corriente crítica a partir de la cual el material deja de ser superconductor y comienza a disipar energía.

En los superconductores de tipo II, la aparición de fluxones provoca que, incluso para corrientes inferiores a la crítica, se detecte una cierta disipación de energía debida al choque de los vórtices con los átomos de la red.

Calor específico

En los metales el calor específico es una función de la temperatura. Cuando la temperatura es muy baja, pero el metal está en el estado normal (es decir, cuando aún no está en estado superconductor) el calor específico tiene la forma

donde a y b son constantes que se pueden medir mediante experimentos. El primer término (el término lineal) refleja la conducción eléctrica, mientras que el segundo término (el que varía con el cubo de la temperatura) se debe a los fonones (es decir, a las vibraciones de la red).

Sin embargo, si seguimos enfriando y el metal pasa al estado superconductor, este comportamiento cambia radicalmente: el calor específico tiene una discontinuidad en la temperatura crítica, aumentando sensiblemente, para después variar de la forma

La siguiente gráfica muestra la dependencia del calor específico recién explicada (de color azul), y, adicionalmente, muestra cómo varía la resistividad (de color verde):

Nótese como el calor específico aumenta bruscamente a un valor igual a unas 2.5 veces el valor en el estado normal. Este valor es independiente del material superconductor, y está explicado en el marco de la teoría BCS.

Asignatura: C.R.F.

Historia de la superconductividad

Ya en el siglo XIX se llevaron a cabo diversos experimentos para medir la resistencia eléctrica a bajas temperaturas, siendo James Dewar el primer pionero en este campo.

Sin embargo, la superconductividad como tal no se descubriría hasta 1911, año en que el físico holandés Heike Kamerlingh Onnes observó que la resistencia eléctrica del mercurio desaparecía bruscamente al enfriarse a 4 K (-269 °C), cuando lo que se esperaba era que disminuyera gradualmente hasta el cero absoluto. Gracias a sus descubrimientos, principalmente por su método para lograr la producción de helio líquido, recibiría dos años más tarde el premio Nobel de física. Durante los primeros años el fenómeno fue conocido como supraconductividad.

En 1913 se descubre que un campo magnético suficientemente grande también destruye el estado superconductor, descubriéndose tres años después la existencia de una corriente eléctrica crítica.

Puesto que se trata de un fenómeno esencialmente cuántico, no se hicieron grandes avances en la comprensión de la superconductividad, puesto que la comprensión y las herramientas matemáticas de que disponían los físicos de la época no fueron suficientes para afrontar el problema hasta los años cincuenta. Por ello, la investigación fue hasta entonces meramente fenomenológica, como por ejemplo el descubrimiento del efecto Meissner en 1933 y su primera explicación mediante el desarrollo de la ecuación de London dos años más tarde por parte de los hermanos Fritz y Heinz London.

Las teorías principales

Los mayores avances en la comprensión de la superconductividad tuvieron lugar en los años cincuenta: en 1950 es publicada la teoría Ginzburg-Landau, y en 1957 vería la luz la teoría BCS.

La teoría BCS fue desarrollada por Bardeen, Cooper y Schrieffer (de sus iniciales surge el nombre BCS), gracias a lo cual los tres recibirían el premio Nobel de física en 1972. Esta teoría se pudo desarrollar gracias a dos pistas fundamentales ofrecidas por físicos experimentales a principios de los años cincuenta:

  • el descubrimiento del efecto isotópico en 1950 (que vinculó la superconductividad con la red cristalina),

  • y el descubrimiento de Lars Onsager en 1953 de que los portadores de carga son en realidad parejas de electrones llamados pares de Cooper (resultado de experimentos sobre la cuantización flujo magnético que pasa a través de un anillo superconductor).

La teoría Ginzburg-Landau es una generalización de la teoría de London desarrollada por Vitaly Ginzburg y Lev Landau en 1950. Si bien esta teoría precede siete años a la teoría BCS, los físicos de Europa Occidental y Estados Unidos le prestaron poca atención por su carácter más fenomenológico que teórico, unido a la incomunicación de aquellos años entre ambos lados del Telón de Acero. Esta situación cambió en 1959, año en que Lev Gor'kov demostró que se podía derivar rigurosamente a partir de la teoría microscópica en un artículo que también publicó en inglés.

En 1962 Brian David Josephson predijo que podría haber corriente eléctrica entre dos conductores incluso si hubiera una pequeña separación entre estos, debido al efecto túnel. Un año más tarde Anderson y Rowell lo confirmaron experimentalmente. El efecto sería conocido como efecto Josephson, y está entre los fenómenos más importantes de los superconductores, teniendo gran variedad de aplicaciones, desde la magnetoencefalografía hasta la predicción de terremotos.

Los superconductores de alta temperatura tras algunos años de relativo estancamiento, en 1986 Bednorz y Müller descubrieron que una familia de materiales cerámicos, los óxidos de cobre con estructura de perovsquita, eran superconductores con temperaturas críticas superiores a 90 kelvin. Estos materiales, conocidos como superconductores de alta temperatura, estimularon un renovado interés en la investigación de la superconductividad. Como tema de la investigación pura, estos materiales constituyen un nuevo fenómeno que no se explica por las teorías actuales. Y, debido a que el estado superconductor persiste hasta temperaturas más manejables, superiores al punto de ebullición del nitrógeno líquido, muchas aplicaciones comerciales serían viables, sobre todo si se descubrieran materiales con temperaturas críticas aún mayores.

Obtención de materiales superconductores

Debido a las bajas temperaturas que se necesitan para conseguir la superconductividad, los materiales más comunes se suelen enfriar con helio líquido (el nitrógeno líquido sólo es útil cuando se manejan superconductores de alta temperatura). El montaje necesario es complejo y costoso, utilizándose en muy contadas aplicaciones como, por ejemplo, la construcción de electroimanes muy potentes para resonancia magnética nuclear.
Sin embargo, en los años 80 se descubrieron los superconductores de alta temperatura, que muestran la transición de fase a temperaturas superiores a la transición líquido-vapor del nitrógeno líquido. Esto ha abaratado mucho los costos en el estudio de estos materiales y abierto la puerta a la existencia de materiales superconductores a temperatura ambiente, lo que supondría una revolución en la industria del siglo XXI. La mayor desventaja de estos materiales es su composición cerámica, lo que lo hace poco apropiado para fabricar cables mediante deformación plástica, el uso más obvio de este tipo de materiales. Sin embargo se han desarrollado técnicas nuevas para la fabricación de cintas como IBAD (deposición asistida mediante haz de iones). Mediante esta técnica se han logrado cables de longitudes mayores de 1 kilómetro.

Asignatura: C.R.F.

Cables superconductores

Actualmente, un cable superconductor necesita de una cubierta refrigerante a su alrededor para mantenerlo a una temperatura inferior a la temperatura crítica del material que lo forma. Es evidente que si se dispusiera de un superconductor que trabajara a la temperatura ambiente (o mayor) el sistema de refrigeración no sería necesario. Claro que si se tuviera un elemento conductor fabricado con los nuevos materiales cerámicos, el sistema de refrigeración se simplificaría muchísimo en su diseño y disminuiría mucho su costo de fabricación. Nos referimos a los actuales cables superconductores convencionales. Aunque la filosofía del diseño permanecerá con los nuevos materiales cerámicos superconductores.
Puede hacerse, a grandes rasgos, una distinción entre las características de los cables superconductores a partir de sus componentes: el aislamiento térmico y el sistema conductor eléctrico.

Por otro lado, con respecto a la construcción mecánica, se tienen tres tipos de cables superconductores:

1) Rígidos. El aislamiento y el conductor se fabrican con tubos rígidos. Una de las dificultades principales de este diseño es que la longitud máxima de manufactura transportable es de 20 metros aproximadamente, de lo que resulta un gran número de uniones. Se requieren, además, componentes corrugados para compensar las contracciones térmicas.

2) Semiflexibles. En este caso también el sistema de aislamiento térmico consta de tubos rígidos con componentes corrugados para compensar las contracciones térmicas. Sin embargo, el conductor es flexible y puede consistir de un tubo corrugado, o de alambres doblados en forma helicoidal sobre un soporte cilíndrico hueco. Estos cables superconductores pueden fabricarse en longitudes de 200 a 500 metros y ser transportados en tambores.
3) Completamente flexibles. En este tipo de cable el aislamiento térmico también es flexible. El cable está construido con tubos corrugados, de manera que no hay problemas con respecto al transporte o a las contracciones térmicas. El conductor puede ser, otra vez, un tubo corrugado o alambre doblado en forma helicoidal.
En los tipos de cable rígido y semiflexible todos los conductores pueden acomodarse en una envoltura térmica rígida común, lo que tiene un efecto para evitar pérdidas térmicas.
Estos cables han sido utilizados hasta ahora, principalmente, para la construcción de electroimanes de gran intensidad de campo y en pocos casos para líneas de transmisión.

Es necesario mencionar que la tecnología de fabricación varía dependiendo de si el cable va a transportar corriente directa o corriente alterna. La diferencia se refiere a la disposición de los superconductores dentro del cable. Sin embargo, el esquema general permanece prácticamente sin cambio. Los materiales más utilizados hasta este momento siguen siendo Nb3Sn y NbTi.

Hay que mencionar que las cualidades mecánicas de los nuevos materiales superconductores cerámicos para la fabricación de alambres son muy pobres. Sin embargo, se está trabajando febrilmente en desarrollar una tecnología que permita hacer alambres con los nuevos materiales superconductores cerámicos; ya se están comercializando algunas pequeñas bobinas para diferentes usos, especialmente en las fábricas de componentes electrónicos muy pequeños (de los llamados microchips).

Asignatura: C.R.F.

Aplicaciones de la Superconductividad

1) La producción de grandes campos magnéticos. Al decir grandes nos referimos tanto a una gran intensidad del campo magnético como al espacio en el cual se crea el campo.

2) La fabricación de cables de transmisión de energía. Aunque éstos ya se manufacturan a partir de los superconductores convencionales (no de los nuevos superconductores cerámicos), actualmente no son competitivos comercialmente con respecto a los cables aéreos normales, a menos de que cubran una gran distancia (de cientos de kilómetros). En los casos en que las líneas de transmisión deben ser subterráneas, habría cierta ventaja económica con la utilización de los cables superconductores.

3) La fabricación de componentes circuitos electrónicos. Estos dispositivos electrónicos fueron ideados originalmente con la intención de utilizar la transición de estado normal a estado superconductor como un interruptor, mas resultaron decepcionantes con respecto a los logros alcanzados por los transistores de películas delgadas y se ha abandonado su uso en este aspecto. Este panorama puede cambiar con el descubrimiento de los nuevos materiales superconductores cerámicos. Cabe mencionar que son de gran interés los dispositivos basados en la utilización del llamado efecto Josephson (que es el efecto de "tunelamiento" conocido por la mecánica cuántica, pero de corriente de superconductividad aun en ausencia de un voltaje aplicado). Resultan superiores a otras tecnologías y tienen un gran campo de aplicación que va desde la detección de señales del infrarrojo lejano que provienen del espacio exterior, hasta pequeñísimos campos magnéticos que se producen en el cerebro humano. También la corriente Josephson a voltaje cero depende fuertemente de un campo magnético aplicado, lo que lleva a la posibilidad de tener un interesante interruptor para circuitos lógicos en las computadoras.

La aplicación más importante, en cuanto a la cantidad de material empleado, es y será por mucho tiempo la producción de campos magnéticos, que se emplean, principalmente, en los laboratorios de física con fines de investigación, y es común ver pequeños electroimanes superconductores que sirven para producir campos magnéticos con intensidades del orden de 103 Oersted. Dentro de la investigación en el campo de la física, también se utilizan electroimanes superconductores para generar campos magnéticos altamente estables, útiles en los estudios de la resonancia magnética nuclear y la microscopía electrónica de alta resolución. Son muy utilizados en las cámaras de burbujas que sirven para la detección de partículas y que requieren campos magnéticos muy intensos.
Por otro lado, se espera que los motores y generadores superconductores tendrán enormes consecuencias en lo social y económico, en unos años más, pues para su elaboración se utilizan campos magnéticos intensos. También se desea utilizar electroimanes superconductores para la levitación de trenes de transporte de pasajeros o de carga.

Es conveniente señalar las propiedades que se requieren en los superconductores comerciales:

1) La mayor temperatura crítica posible. Esto se debe a que, cuanto mayor sea, más elevada podrá ser la temperatura de operación del dispositivo fabricado, reduciéndose de esta manera los costos por refrigeración requeridos para alcanzar el estado superconductor en operación.

2) El mayor campo magnético crítico posible. Como se pretende utilizar el superconductor para generar campos magnéticos intensos, mientras mayor sea el campo magnético que se quiere generar, mayor tendría que ser el campo crítico del material superconductor.

3) La mayor densidad de corriente crítica posible. A mayor densidad de corriente crítica que la muestra pueda soportar antes de pasar al estado normal, más pequeño podrá hacerse el dispositivo, reduciéndose, de esta manera, la cantidad requerida de material superconductor y también la cantidad de material que debe refrigerarse.

4) La mayor estabilidad posible. Es muy común que los superconductores sean inestables bajo cambios repentinos de corriente, de campos magnéticos, o de temperatura, o bien ante choques mecánicos e incluso por degradación del material al transcurrir el tiempo (como ocurre en muchos de los nuevos materiales superconductores cerámicos). Así que, si ocurre algún cambió súbito cuando el superconductor está en operación, éste podría perder su estado superconductor. Por eso es conveniente disponer de la mayor estabilidad posible.

5) Facilidad de fabricación. Un material superconductor será completamente inútil para aplicaciones en gran escala si no puede fabricarse fácilmente en grandes cantidades.

6) Costo mínimo. Como siempre, el costo es el factor más importante para considerar cualquier material utilizado en ingeniería y deberá mantenerse tan bajo como sea posible.


Se han propuesto muchas aplicaciones industriales a gran escala de los imanes superconductores. En la actualidad existen algunos métodos alternativos que emplean campos magnéticos pero, si se aplica la superconductividad en estas áreas, se espera obtener un ahorro considerable en costos de operación. En algunas otras áreas el uso de electroimanes superconductores ha hecho la idea técnica y económicamente posible.

Algunas de las aplicaciones más importantes de los electroimanes superconductores, sin que la lista pretenda ser exhaustiva, es la siguiente:

1) Aplicaciones biológicas. Se sabe desde hace mucho tiempo que los campos magnéticos intensos afectan el crecimiento de plantas y animales. Así, se han utilizado electroimanes superconductores para generar campos magnéticos intensos y estudiar sus efectos en el crecimiento de plantas y animales y, además, analizar su efecto en el comportamiento de estos últimos.

2) Aplicaciones químicas. Es un hecho conocido que los campos magnéticos pueden cambiar las reacciones químicas y ser utilizados en la catálisis.

3) Aplicaciones médicas. Se han aplicado campos magnéticos para arreglar arterias, sacar tumores y para sanar aneurismas sin cirugía. También se estudia la influencia de los campos magnéticos en las funciones vitales del cuerpo humano.

4) Levitación. Una aplicación muy importante es en el transporte masivo, rápido y económico. La idea de usar una fuerza magnética para hacer "flotar" vehículos de transporte ha estado en la mente de los científicos por casi un siglo y la posible aplicación de la superconductividad a este problema lo ha renovado y actualizado. Hay, esencialmente, dos métodos posibles para conseguir la levitación. Uno corresponde a la utilización de un sistema atractivo y el otro a un sistema repulsivo. Describiremos muy brevemente los principios de funcionamiento de cada uno.

El sistema atractivo ha sido investigado, principalmente, en Alemania y Estados Unidos. Como es sabido, la fuerza magnética entre un material ferromagnético colocado en el seno de un campo magnético y la fuente que genera al campo magnético es siempre atractiva. El peso del vehículo es sostenido por esta fuerza atractiva. Las características básicas de este sistema son:

a) el campo magnético necesario puede ser generado por electroimanes convencionales hechos de metales normales, a causa de la presencia de material ferromagnético;

b) el uso de electroimanes de metal normal requiere una pequeña brecha de alrededor de 1 cm entre el material ferromagnético y los electroimanes. Aun con un diseño óptimo, utilizando metal normal, el costo es mucho menor cuando se utilizan electroimanes superconductores;

c) la fuerza magnética aumenta cuando la brecha se hace más pequeña y disminuye cuando aumenta, lo cual significa que el sistema es inherentemente inestable, y para lograr su estabilización es necesario que tenga un mecanismo de retroalimentación que le permita regular la corriente y, por tanto, la fuerza atractiva.

Aunque no se puede hacer ninguna conclusión negativa acerca del sistema atractivo, éste presenta, al menos, dos desventajas cuando se trata de velocidades superiores a 250 km/h. La primera es la pequeña brecha en la cual debe operar. Una razón fundamental por la que el tren convencional de ruedas y rieles no puede viajar a velocidades superiores a 300 km/h es que su posición vertical tiene que ser mantenida dentro de una variación no mayor de 2 milímetros sobre una distancia de 10 metros. La segunda razón es que el sistema es intrínsecamente inestable con respecto al movimiento vertical. Estas dos desventajas, si bien no hacen imposible la operación a alta velocidad, si requieren una gran cantidad de energía eléctrica para lograr mantener una brecha del tamaño adecuado para velocidades mayores que 250 km/h. Se ha sugerido que los electroimanes de metal normal sean sustituidos por electroimanes superconductores para que sea posible construir una brecha de mucho mayor tamaño. La contraparte de este beneficio radica en la dificultad de controlar las corrientes necesarias para estabilizar la posición vertical.
En lo que se refiere al sistema de levitación por repulsión se puede decir que presenta mejores perspectivas. Este sistema funciona como una aplicación de la ley de Lenz de inducción de corrientes eléctricas al tener campos magnéticos que varían con el tiempo, en cuyo seno existe una espira de material conductor. El campo magnético que genera la corriente inducida da lugar a un campo magnético que tiene una polaridad opuesta al campo magnético original, creándose una repulsión entre ambos campos magnéticos.

Un aspecto importante del sistema repulsivo es la disipación de energía que se da en el conductor; es una pérdida por la resistencia eléctrica del material conductor. Esta disipación depende de la frecuencia de excitación y tiene un máximo para cierto valor de la frecuencia. Sin embargo, tiende a cero conforme la frecuencia de excitación crece hacia valores más grandes.

La característica más importante del sistema repulsivo, en lo que se refiere a transportación masiva, es la utilización de electroimanes superconductores para proporcionar los campos magnéticos requeridos. Los electroimanes superconductores hacen posible generar un campo magnético intenso en un volumen grande y esto tiene profundos efectos en el diseño del sistema. Los puntos sobresalientes del sistema son:

a) La brecha entre los electroimanes y el material conductor puede ser, al menos, de una magnitud mayor que para el caso atractivo. Esto es fundamental para el diseiío de operación de vehículos de alta velocidad.

b) Un campo magnético intenso, generado sobre un gran volumen por los electroimanes superconductores, puede incorporarse fácilmente a un mecanismo de propulsión y de esta manera los mecanismos de suspensión (o levitación) y los de propulsión son compatibles.

A menos que investigaciones posteriores indiquen lo opuesto, parece que no existen problemas técnicos fundamentales con este sistema. Sin embargo, se requieren algunas innovaciones técnicas antes de poder completar un diseño comercial.

El descubrimiento de materiales superconductores cerámicos con una elevada temperatura crítica hace aún más atractiva la idea de la utilización de materiales superconductores para la transportación masiva. Cuando menos ya no se requerirá enfriar a temperatura de helio líquido, bastará con la refrigeración que proporciona el nitrógeno líquido. Claro que aún sigue la búsqueda de materiales cerámicos superconductores de temperatura crítica superior a la temperatura ambiente y, si se logra hallarlos, ya no será necesaria la refrigeración del sistema, reduciéndose así los costos de construcción y operación.

5) Generación de energía. Utilización de imanes superconductores para lograr "botellas magnéticas" que sirvan para la generación de energía nuclear por fusión que no presenta problemas de desechos radiactivos, como sucede con los actuales generadores de energía nuclear por fusión.

6) Separación magnética. Ésta se aplica comercialmente para separar materiales paramagnéticos y materiales ferromagnéticos: en la industria del caolín, para separar sustancias magnéticas de la arcilla; para la limpieza magnética selectiva del carbón, o sea, separar sustancias minerales de sustancias orgánicas.

7) Limpieza de aguas contaminadas. Por medio de campos magnéticos se pueden separar las impurezas que al estar disueltas en agua quedan ionizadas y al fluir a través de un campo magnético pueden ser desviadas por éste y ser apartadas del agua.

8) Blindaje y modelaje de campos magnéticos. Puede lograrse por medio de planos superconductores que ya han sido utilizados para este fin en sistemas de producción de energía.

9) Aceleradores de mucha energía. Se han podido desarrollar electroimanes dipolares y cuadrupolares oscilantes de materiales superconductores, capaces de generar los campos magnéticos más intensos de la historia para su utilización en aceleradores de partículas de energía muy grandes.


La primera sugerencia para utilizar la transición del estado normal al estado superconductor en la electrónica fue hecha en 1956. El dispositivo que se propuso recibió el nombre de criotrón. A continuación haremos una pequeña descripción de este dispositivo.

Consiste en un par de alambres superconductores, uno enrollado alrededor de otro. Usualmente un alambre de niobio se coloca alrededor de un alambre de tantalio, aislados eléctricamente entre sí.

El campo magnético crítico del niobio es bastante mayor que el del tantalio. Ambos alambres se encuentran inicialmente en un estado superconductor. Supongamos ahora que una corriente, I, pasa por el alambre de tantalio que, al ser superconductor, no ofrece resistencia al paso de la corriente. Si hacemos pasar una corriente IC, a través del alambre Nb, se genera un campo magnético dentro del cual el alambre de tantalio (Ta) queda inmerso. Si la corriente es suficientemente intensa se puede generar un campo magnético que lleve al tantalio a su estado normal. Si esto ocurre, aparece una resistencia eléctrica en el tantalio al paso de la corriente, reduciéndose así el valor de esa corriente. Sin embargo, el alambre de Nb puede permanecer en el estado superconductor ya que el campo magnético crítico del Nb es mayor que el del Ta para la misma temperatura. Por tanto, el valor de la corriente en el alambre del tantalio puede controlarse con una corriente menor.

El alambre de tantalio recibe el nombre de alambre de paso o paso. El alambre de niobio recibe el nombre de alambre de control, o control.

Por lo general el calibre del alambre de paso se toma lo más grande posible para así tener en él la mayor cantidad de corriente.

Al principio se utilizaron criotrones como interruptores rápidos para su posible uso en computadoras. Incluso, existen criotrones de películas delgadas. En general, hubo bastante esfuerzo dedicado al desarrollo de circuitos superconductores de criotrones. Sin embargo, a mediados de los años sesenta, estos dispositivos habían perdido ya terreno respecto a los dispositivos de transistores que funcionan a la temperatura ambiente.

La razón más importante, quizá, es que el criotrón no fue tan eficiente comparado con las versiones mejoradas del transistor. Sin embargo, con los nuevos materiales superconductores cerámicos los criotrones podrían ser de nuevo competitivos, ya que en ellos las temperaturas de refrigeración son mucho más grandes. Por otro lado, el criotrón se ha utilizado y se utiliza para controlar corrientes en circuitos de imanes superconductores.

También ocurrió que el descubrimiento del llamado efecto Josephson y el desarrollo alcanzado en el campo de los circuitos integrados trajeron como consecuencia una perspectiva espléndida de aplicaciones de la superconductividad en la electrónica.

El efecto Josephson consiste en el paso de corrientes superconductoras (pares de Cooper) a través de una unión que, normalmente y desde un punto de vista clásico, no debería dejar pasar ningún electrón. Es un fenómeno típicamente cuántico, explicable por la mecánica cuántica.

La corriente Josephson está presente aun en ausencia de un voltaje aplicado a la unión (que recibe el nombre de unión túnel). Esta corriente de voltaje cero depende fuertemente de un campo magnético aplicado. Estas características permiten disponer de un interesante interruptor para circuitos lógicos. Este efecto también se observa, desde luego, en los nuevos materiales superconductores cerámicos.

Es evidente que si tenemos pequeñas espiras de material superconductor por las que circula una corriente, se contará con información almacenada, pues la corriente permanecerá circulando en la espira sin pérdida y, como sabemos, toda corriente que circula genera un momento magnético. Si la corriente circulara en sentido contrario, el momento magnético generado sería opuesto al inicial. Estos dos sentidos de circulación pueden constituir dos estados de una célula de memoria.

Para las computadoras, el uso de dispositivos de efecto Josephson lleva a tiempos de transferencia de corriente extremadamente breves. Los tiempos de respuesta de un interruptor de efecto Josephson son de 5 a 10 picosegundos (un picosegundo es igual a 10-12 segundos).

La dificultad de la aplicación del efecto Josephson radica en la elaboración de la unión en donde se da este efecto. Dicha unión ha de construirse con capas de oxido de unos 30 angstroms y, además, las características han de ser estables ante ciclajes térmicos y almacenamiento. Sin embargo, su utilización parece muy ventajosa y polifacética.

El SQUID (dispositivo superconductor de interferencia cuántica, por sus siglas en inglés) es uno de los dispositivos superconductores más utilizados. Existen dos tipos de este dispositivo: el SQUID de corriente directa (cd) y el SQUID de radio frecuencia (rf). Son los instrumentos más sensibles que existen para medir una gran variedad de cantidades físicas: campos magnéticos, cambios espaciales de campos magnéticos, susceptibilidades magnéticas, voltajes muy pequeños y desplazamientos microscópicos.

El SQUID de corriente directa está formado por dos uniones de tipo Josephson conectadas en paralelo en un circuito de superconductores. Cuando aplicamos una pequeña corriente, I, ésta fluye a través de las uniones como una supercorriente sin ocasionar una caída de potencial, esto es, sin requerir un voltaje aplicado a través de la barrera. Sin embargo, cuando esta corriente excede cierto valor crítico, IC, se genera un voltaje V en la unión y la corriente, IC, es una función oscilatoria del flujo magnético f que atraviesa el circuito (véase la figura 19 de la sección "La superconductividad en imágenes"). El periodo de esta función es de un flujón, que es un quantum de flujo magnético, f0 = h/2e = 2.07 x 10-15 weber. La naturaleza oscilatoria de la corriente se debe a la interferencia de las dos ondas que describen los pares de Cooper en las uniones, de manera análoga a la interferencia de dos ondas electromagnéticas coherentes (o sea dos ondas de luz). Por esto, al SQUID se le llama algunas veces interferómetro.

El SQUID puede utilizarse como un magnetómetro extremadamente sensible, ya que es posible detectar un cambio de flujo, df, mucho más pequeño que un flujón, utilizando un circuito de flujo magnético bloqueado que genera una corriente en la espira acoplada. al SQUID de manera que se genera un flujo -df para mantener el flujo magnético total del SQUIDen un valor constante. El voltaje de resultante de salida es proporcional a df y éste es proporcional al campo magnético

El SQUID de radio frecuencia, es un diseño anterior al del SQUID cd. Consta de una unión Josephson incorporada a un circuito superconductor. El circuito está acoplado a la bobina de un circuito enfriado LC (bobina-condensador) que está excitado a su frecuencia de resonancia, típicamente de 30 MHZ. La amplitud del voltaje oscilante de radio frecuencia a través del resonante es periódico en el flujo magnético, con periodo de un flujón. Después de desmodular la señal de radiofrecuencia, la salida se utiliza para bloquear el flujo del SQUID, de la misma manera que en el SQUID cd. Este tipo de SQUID es mucho menos sensitivo que el SQUID cd, pero ha permanecido en el mercado hasta muy recientemente.

Aunque, por ahora, es demasiado pronto para que estos dispositivos tengan una gran repercusión en aplicaciones prácticas, dentro de la próxima década se espera un gran auge, tanto en la variedad de estos dispositivos superconductores como en la variedad de sus aplicaciones. Una de las más novedosa es en biomagnetismo, donde se utilizan para detectar espeacialmente las fuentes de los pequeñísimos campos magnéticos generados por el cerebro.

Para finalizar, existen computadoras que tienen muchos elementos y dispositivos superconductores y que son mucho más rápidas que las construidas con materiales normales. En general las utilizan los departamentos de defensa de las grandes potencias para procesar la información de los satélites espías sobre un posible ataque con proyectiles. Se requiere procesar muchísima información sobre las trayectorias de los proyectiles para repeler un ataque y dar una respuesta rápida y contundente. También se utilizan para detectar y cuantificar los movimientos militantes cotidianos de todos los países del mundo. Desafortunadamente el mundo científico todavía no tiene acceso de manera plena a estas computadoras para realizar trabajos de investigación.

En México se han dado ya los primeros pasos para entrar a la era de los nuevos materiales superconductores cerámicos de alta temperatura crítica que ofrecen tantas aplicaciones pacíficas para el mejoramiento de nuestras condiciones nacionales de vida. Sin embargo, el esfuerzo deberá no sólo mantenerse sino también incrementarse.

Asignatura: C.R.F.