lunes, 26 de julio de 2010

Cables superconductores

Actualmente, un cable superconductor necesita de una cubierta refrigerante a su alrededor para mantenerlo a una temperatura inferior a la temperatura crítica del material que lo forma. Es evidente que si se dispusiera de un superconductor que trabajara a la temperatura ambiente (o mayor) el sistema de refrigeración no sería necesario. Claro que si se tuviera un elemento conductor fabricado con los nuevos materiales cerámicos, el sistema de refrigeración se simplificaría muchísimo en su diseño y disminuiría mucho su costo de fabricación. Nos referimos a los actuales cables superconductores convencionales. Aunque la filosofía del diseño permanecerá con los nuevos materiales cerámicos superconductores.

Puede hacerse, a grandes rasgos, una distinción entre las características de los cables superconductores a partir de sus componentes: el aislamiento térmico y el sistema conductor eléctrico.

Por otro lado, con respecto a la construcción mecánica, se tienen tres tipos de cables superconductores:

1) Rígidos. El aislamiento y el conductor se fabrican con tubos rígidos. Una de las dificultades principales de este diseño es que la longitud máxima de manufactura transportable es de 20 metros aproximadamente, de lo que resulta un gran número de uniones. Se requieren, además, componentes corrugados para compensar las contracciones térmicas.



Tipo de cable superconductor llamado rígido. Sus componentes son los mismos que los mostrados en las figuras 1) tubo de protección, 2) superaislamiento, 3) vacío, 4) espaciadores, 5) fuelles, 6) nitrógeno líquido, 7) escudo frío, 8) helio líquido, 9) superconductor, 10) aislamiento eléctrico, 11) escudo frío, 12) retorno de helio, 13) tubo de helio y 14) soporte.

2) Semiflexibles. En este caso también el sistema de aislamiento térmico consta de tubos rígidos con componentes corrugados para compensar las contracciones térmicas. Sin embargo, el conductor es flexible y puede consistir de un tubo corrugado, o de alambres doblados en forma helicoidal sobre un soporte cilíndrico hueco. Estos cables superconductores pueden fabricarse en longitudes de 200 a 500 metros y ser transportados en tambores.



3) Completamente flexibles. En este tipo de cable el aislamiento térmico también es flexible. El cable está construido con tubos corrugados, de manera que no hay problemas con respecto al transporte o a las contracciones térmicas. El conductor puede ser, otra vez, un tubo corrugado o alambre doblado en forma helicoidal.








Omar Caballero
EES
Sección 1
http://www.textoscientificos.com/fisica/superconductividad/cables-superconductores

Tecnología El Cobre como conductor eléctrico

¿Por qué el cobre es tan utilizado en sistemas eléctricos?

La principal razón para utilizar el cobre es su excelente conductividad eléctrica o, en otras palabras, su baja resistencia eléctrica. La resistencia es indeseable, pues produce pérdidas de calor cuando el flujo eléctrico circula a través del material. El cobre tiene la resistencia eléctrica más baja de todos los metales no preciosos.



¿Existen otros materiales que puedan ser utilizados como conductores eléctricos?

Sí, casi todos los materiales conducen la electricidad en un cierto grado. Pero para ser un serio candidato a ser utilizado como conductor eléctrico, un material debe combinar una conductividad muy alta con pocas pero importantes características mecánicas. Por esa razón, prácticamente, los materiales más utilizados como conductores son los metales.

Los llamados superconductores son materiales especiales que tienen, en ciertas circunstancias específicas, una conductividad eléctrica casi perfecta. Algunos de los materiales superconductores son aleaciones de cobre. Los superconductores deben ser operados a muy bajas temperaturas (temperaturas inferiores a - 200º C para algunos materiales) y eso es muy difícil desde el punto de vista práctico en un gran sistema.

Europa, por ejemplo, tiene 7 millones de kilómetros entre líneas y cables de electricidad, imagine tratar de mantenerlos a -200 º C . Esto no sólo es virtualmente imposible, sino que además requeriría de una gran cantidad de energía para mantener el enfriamiento. Los superconductores, sin embargo, son muy útiles en circunstancias específicas, por ejemplo, donde debe ser transportada una gran cantidad de energía eléctrica o dónde los espacios son limitados, como es el caso de grandes áreas urbanas con gran densidad de energía, y en subestaciones de transmisión.

Aparte de los superconductores, cuatro metales sobresalen por su gran conductividad: la plata, el oro, el cobre y el aluminio. Debido a que la plata y el oro son demasiado costosos, el cobre y el aluminio son los principales candidatos. Otros metales tienen mucha mayor resistencia, por lo que son menos pertinentes.



¿Tienen el cobre y el aluminio la misma conductividad?

No exactamente. La resistencia del aluminio es 65% más alta que la de cobre. Como resultado de esto, para conducir la misma corriente eléctrica, un cable de aluminio necesitará una sección transversal un 65% más grande que la de un cable de cobre.

Pero esa no es toda la historia. Además de menos conductivo, el aluminio es tres veces más liviano que el cobre. Como resultado de esto, el cobre y el aluminio tienen cada uno sus propias áreas de aplicación.



¿Cuáles son ejemplos típicos para los campos de aplicación de ambos metales?

Para cables aéreos, el peso de los cables es el factor decisivo, por eso el aluminio es el que más se usa. Esto significa conductores más voluminosos, pero no es significativo a la hora de diseñar una línea aérea.

Para cables bajo tierra que transportan alto voltaje, el cobre es el más pertinente; en este caso el mayor costo de este material se debe a su aislamiento. El aluminio puede significar un conductor de mayor área , por lo que se necesitará una mayor cantidad de material de aislamiento para rodearlo, lo que puede redundar en un cable de mayor costo. Consecuentemente, en este caso, se prefiere a menudo el menor volumen que ofrece el cobre.

Otra ventaja del cobre para aplicaciones bajo tierra es su alta resistencia contra la corrosión. Esta es la razón por la que las líneas aéreas en zonas costeras, son a menudo construidas en cobre en vez de aluminio.



¿Qué conductor usar en cables eléctricos de hogares y oficinas?

En casas y oficinas, el cobre se utiliza por razones prácticas. Los terminales de conexión como para enchufes hechos de aluminio serían mucho más grandes, lo que resultaría muy poco práctico. Los cables también serían más gruesos y se necesitarían ductos o bandejas más grandes. Además, como los cables de cobre son hechos por un número importante de finos hilos de ese material, son altamente flexibles y fáciles de pasar a través de los ductos.
Existe otra razón del porqué se prefiere el cobre en los edificios, y es que éste permite que un alambre y un Terminal de prensa puedan ser conexionados sin deformaciones del conductor, situación que es altamente conveniente (ver figura). Estas conexiones no pueden ser hechas en alambres de aluminio. Bajo la presión del tornillo, el aluminio podría dilatarse, disminuyendo su área activa, lo que deriva en una conexión debilitada, con gran riesgo de sobre temperatura y la probabilidad del fuego asociado



¿Existen otros criterios importantes aparte de la conductividad y densidad?

Sí existen. El cobre posee excelentes características que lo convierten en el conductor por excelencia en equipos eléctricos. Mecánicamente, es un material más fuerte que el aluminio, y consecuentemente más durable. Esto es especialmente verdadero para aplicaciones en entornos exigentes, tales como guarniciones de alambre para coches, alambre magnético para motores eléctricos o cables de poder en entornos industriales.

Además, posee un bajo coeficiente de dilatación térmica, que implica una baja expansión cuando se calienta; esto implica proveer menos espacio libre para la expansión del material en los equipos. El cobre, además, tiene una mayor capacidad térmica que el aluminio (cuando se hace referencia a unidad por volumen), lo que significa que se puede disipar más calor durante procesos pasajeros.

Los diseños en cobre generalmente derivan en aplicaciones eléctricas más compactas. Esta compactación, además, economiza en los materiales no conductores del aparato. Como resultado, un diseño basado en el uso de cobre puede terminar siendo más liviano que su equivalente en aluminio, a pesar del mayor peso especifico que tiene el cobre.



¿Cuáles son las propiedades físicas más relevantes del cobre y el aluminio en aplicaciones eléctricas?

Las características más importantes están en la siguiente tabla:



Omar Caballero
EES
Sección 1
Fuente: Procobre - ICA International Copper Association, Ltd. 

Aplicaciones de la superconductividad en la electrónica

La primera sugerencia para utilizar la transición del estado normal al estado superconductor en la electrónica fue hecha en 1956. El dispositivo que se propuso recibió el nombre de criotrón. A continuación haremos una pequeña descripción de este dispositivo.
Consiste en un par de alambres superconductores, uno enrollado alrededor de otro. Usualmente un alambre de niobio se coloca alrededor de un alambre de tantalio, aislados eléctricamente entre sí.
El campo magnético crítico del niobio es bastante mayor que el del tantalio. Ambos alambres se encuentran inicialmente en un estado superconductor. Supongamos ahora que una corriente, I, pasa por el alambre de tantalio que, al ser superconductor, no ofrece resistencia al paso de la corriente. Si hacemos pasar una corriente IC, a través del alambre Nb, se genera un campo magnético dentro del cual el alambre de tantalio (Ta) queda inmerso. Si la corriente es suficientemente intensa se puede generar un campo magnético que lleve al tantalio a su estado normal. Si esto ocurre, aparece una resistencia eléctrica en el tantalio al paso de la corriente, reduciéndose así el valor de esa corriente. Sin embargo, el alambre de Nb puede permanecer en el estado superconductor ya que el campo magnético crítico del Nb es mayor que el del Ta para la misma temperatura. Por tanto, el valor de la corriente en el alambre del tantalio puede controlarse con una corriente menor.
El alambre de tantalio recibe el nombre de alambre de paso o paso. El alambre de niobio recibe el nombre de alambre de control, o control.
Por lo general el calibre del alambre de paso se toma lo más grande posible para así tener en él la mayor cantidad de corriente.
Al principio se utilizaron criotrones como interruptores rápidos para su posible uso en computadoras. Incluso, existen criotrones de películas delgadas. En general, hubo bastante esfuerzo dedicado al desarrollo de circuitos superconductores de criotrones. Sin embargo, a mediados de los años sesenta, estos dispositivos habían perdido ya terreno respecto a los dispositivos de transistores que funcionan a la temperatura ambiente.
La razón más importante, quizá, es que el criotrón no fue tan eficiente comparado con las versiones mejoradas del transistor. Sin embargo, con los nuevos materiales superconductores cerámicos los criotrones podrían ser de nuevo competitivos, ya que en ellos las temperaturas de refrigeración son mucho más grandes. Por otro lado, el criotrón se ha utilizado y se utiliza para controlar corrientes en circuitos de imanes superconductores.

Esquema que muestra al criotrón o relevador superconductor.


También ocurrió que el descubrimiento del llamado efecto Josephson y el desarrollo alcanzado en el campo de los circuitos integrados trajeron como consecuencia una perspectiva espléndida de aplicaciones de la superconductividad en la electrónica.
El efecto Josephson consiste en el paso de corrientes superconductoras (pares de Cooper) a través de una unión que, normalmente y desde un punto de vista clásico, no debería dejar pasar ningún electrón. Es un fenómeno típicamente cuántico, explicable por la mecánica cuántica.
La corriente Josephson está presente aun en ausencia de un voltaje aplicado a la unión (que recibe el nombre de unión túnel). Esta corriente de voltaje cero depende fuertemente de un campo magnético aplicado. Estas características permiten disponer de un interesante interruptor para circuitos lógicos. Este efecto también se observa, desde luego, en los nuevos materiales superconductores cerámicos.
Es evidente que si tenemos pequeñas espiras de material superconductor por las que circula una corriente, se contará con información almacenada, pues la corriente permanecerá circulando en la espira sin pérdida y, como sabemos, toda corriente que circula genera un momento magnético. Si la corriente circulara en sentido contrario, el momento magnético generado sería opuesto al inicial. Estos dos sentidos de circulación pueden constituir dos estados de una célula de memoria.
Para las computadoras, el uso de dispositivos de efecto Josephson lleva a tiempos de transferencia de corriente extremadamente breves. Los tiempos de respuesta de un interruptor de efecto Josephson son de 5 a 10 picosegundos (un picosegundo es igual a 10-12 segundos).
La dificultad de la aplicación del efecto Josephson radica en la elaboración de la unión en donde se da este efecto. Dicha unión ha de construirse con capas de oxido de unos 30 angstroms y, además, las características han de ser estables ante ciclajes térmicos y almacenamiento. Sin embargo, su utilización parece muy ventajosa y polifacética.
El SQUID (dispositivo superconductor de interferencia cuántica, por sus siglas en inglés) es uno de los dispositivos superconductores más utilizados. Existen dos tipos de este dispositivo: el SQUID de corriente directa (cd) y el SQUID de radio frecuencia (rf). Son los instrumentos más sensibles que existen para medir una gran variedad de cantidades físicas: campos magnéticos, cambios espaciales de campos magnéticos, susceptibilidades magnéticas, voltajes muy pequeños y desplazamientos microscópicos.
El SQUID de corriente directa está formado por dos uniones de tipo Josephson conectadas en paralelo en un circuito de superconductores. Cuando aplicamos una pequeña corriente, I, ésta fluye a través de las uniones como una supercorriente sin ocasionar una caída de potencial, esto es, sin requerir un voltaje aplicado a través de la barrera. Sin embargo, cuando esta corriente excede cierto valor crítico, IC, se genera un voltaje V en la unión y la corriente, IC, es una función oscilatoria del flujo magnético φ que atraviesa el circuito. El periodo de esta función es de un flujón, que es un quantum de flujo magnético, φ0 = h/2e = 2.07 x 10-15 weber. La naturaleza oscilatoria de la corriente se debe a la interferencia de las dos ondas que describen los pares de Cooper en las uniones, de manera análoga a la interferencia de dos ondas electromagnéticas coherentes (o sea dos ondas de luz). Por esto, al SQUIDse le llama algunas veces interferómetro.
El SQUID puede utilizarse como un magnetómetro extremadamente sensible, ya que es posible detectar un cambio de flujo, δφ, mucho más pequeño que un flujón, utilizando un circuito de flujo magnético bloqueado que genera una corriente en la espira acoplada. al SQUID de manera que se genera un flujo −δφ para mantener el flujo magnético total del SQUIDen un valor constante. El voltaje de resultante de salida es proporcional a δφ y éste es proporcional al campo magnético
SQUID cd. Está formado por películas delgadas. Las dos uniones Josephson que lleva están abajo del cuadro oscuro, que es de Nb, en la región del borde inferior. La espiral cuadrada de 20 vueltas también es de Nb y está eléctricamente aislada del cuadro, pero muy acoplada a él magnéticamente. El cuadro es de 1 mm por lado aproximadamente.
El SQUID de radio frecuencia, es un diseño anterior al del SQUID cd. Consta de una unión Josephson incorporada a un circuito superconductor. El circuito está acoplado a la bobina de un circuito enfriado LC (bobina-condensador) que está excitado a su frecuencia de resonancia, típicamente de 30 MHZ. La amplitud del voltaje oscilante de radio frecuencia a través del resonante es periódico en el flujo magnético, con periodo de un flujón. Después de desmodular la señal de radiofrecuencia, la salida se utiliza para bloquear el flujo del SQUID, de la misma manera que en el SQUID cd. Este tipo de SQUID es mucho menos sensitivo que el SQUID cd, pero ha permanecido en el mercado hasta muy recientemente.
Aunque, por ahora, es demasiado pronto para que estos dispositivos tengan una gran repercusión en aplicaciones prácticas, dentro de la próxima década se espera un gran auge, tanto en la variedad de estos dispositivos superconductores como en la variedad de sus aplicaciones. Una de las más novedosa es en biomagnetismo, donde se utilizan para detectar espeacialmente las fuentes de los pequeñísimos campos magnéticos generados por el cerebro.
SQUID rf. Está hecho en un configuración toroidal a partir de una barra sólida de Nb. La unión Josephson está en una plaqueta en la parte media.
Para finalizar, existen computadoras que tienen muchos elementos y dispositivos superconductores y que son mucho más rápidas que las construidas con materiales normales. En general las utilizan los departamentos de defensa de las grandes potencias para procesar la información de los satélites espías sobre un posible ataque con proyectiles. Se requiere procesar muchísima información sobre las trayectorias de los proyectiles para repeler un ataque y dar una respuesta rápida y contundente. También se utilizan para detectar y cuantificar los movimientos militantes cotidianos de todos los países del mundo. Desafortunadamente el mundo científico todavía no tiene acceso de manera plena a estas computadoras para realizar trabajos de investigación.




Omar Caballero
EES
Sección 1
http://www.textoscientificos.com 

domingo, 25 de julio de 2010

Sistemas inductivos de almacenamiento de energía

Un ejemplo de aplicación a gran escala de los electroimanes superconductores es el almacenamiento de energía, sistema que podría servir para una gran variedad de propósitos importantes. Para valores adecuados del campo magnético se pueden almacenar densidades de energía muy altas comparadas con otros sistemas de almacenamiento de energía. En esencia, en una bobina hecha de un material superconductor se deja circulando una corriente. Como no hay disipación de energía al no existir resistencia eléctrica, la corriente permanecerá circulando por mucho tiempo. Al momento de necesitarse la energía almacenada en la bobina, se toma. Dependiendo del tiempo en el que puede realizarse la descarga de energía eléctrica, los electroimanes pueden utilizarse en reactores de fusión o en sistemas de distribución comercial de energía eléctrica.

Las descargas de energía del orden de milisegundos pueden utilizarse para iniciar una reacción de fusión nuclear de deuterio-tritio o de deuterio-helio3. Aunque ya es posible construir con los superconductores convencionales (con los nuevos superconductores cerámicos todavía no) electroimanes superconductores capaces de almacenar 10 000 millones de Joules (esto es del orden de 2 800 kilowatts-hora), el interruptor que permite la rápida descarga de energía aun presenta muchos problemas en su funcionamiento. Realizar descargas de 2.8 kilowatts-hora en 0.1 seg es posible con interruptores superconductores. De cualquier modo, el principal atractivo de la aplicación de estos sistemas sería su utilización en las redes comerciales de distribución de energía eléctrica, sobre todo para el consumo en las llamadas "horas pico".

La lista puede extenderse para incluir muchos otros usos, pero la confiabilidad, la facilidad en la operación de los electroimanes y las consideraciones económicas constituirán los factores más importantes en el diseño de sistemas electromagnéticos que utilicen superconductores. Para la mayoría de las aplicaciones técnicas, la operación de los electroimanes debe ser totalmente automática y esto requiere sistemas complicados de control y retroalimentación, así como sistemas de refrigeración de circuito cerrado interconectados con el sistema de alimentación de energía.



Omar Caballero
EES
Sección 1
http://www.afinidadelectrica.com.ar/articulo.php?IdArticulo=178

Aplicaciones de los electroimanes superconductores

 Se han propuesto muchas aplicaciones industriales a gran escala de los imanes superconductores. En la actualidad existen algunos métodos alternativos que emplean campos magnéticos pero, si se aplica la superconductividad en estas áreas, se espera obtener un ahorro considerable en costos de operación. En algunas otras áreas el uso de electroimanes superconductores ha hecho la idea técnica y económicamente posible.
Algunas de las aplicaciones más importantes de los electroimanes superconductores, sin que la lista pretenda ser exhaustiva, es la siguiente:

1- Aplicaciones biológicas. Se sabe desde hace mucho tiempo que los campos magnéticos intensos afectan el crecimiento de plantas y animales. Así, se han utilizado electroimanes superconductores para generar campos magnéticos intensos y estudiar sus efectos en el crecimiento de plantas y animales y, además, analizar su efecto en el comportamiento de estos últimos.
2- Aplicaciones químicas. Es un hecho conocido que los campos magnéticos pueden cambiar las reacciones químicas y ser utilizados en la catálisis.
3- Aplicaciones médicas. Se han aplicado campos magnéticos para arreglar arterias, sacar tumores y para sanar aneurismas sin cirugía. También se estudia la influencia de los campos magnéticos en las funciones vitales del cuerpo humano.
4- Levitación. Una aplicación muy importante es en el transporte masivo, rápido y económico. La idea de usar una fuerza magnética para hacer "flotar" vehículos de transporte ha estado en la mente de los científicos por casi un siglo y la posible aplicación de la superconductividad a este problema lo ha renovado y actualizado. Hay, esencialmente, dos métodos posibles para conseguir la levitación. Uno corresponde a la utilización de un sistema atractivo y el otro a un sistema repulsivo. Describiremos muy brevemente los principios de funcionamiento de cada uno.
El sistema atractivo ha sido investigado, principalmente, en Alemania, Estados Unidos y Japón. Como es sabido, la fuerza magnética entre un material ferromagnético colocado en el seno de un campo magnético y la fuente que genera al campo magnético es siempre atractiva. El peso del vehículo es sostenido por esta fuerza atractiva. Las características básicas de este sistema son:

a) el campo magnético necesario puede ser generado por electroimanes convencionales hechos de metales normales, a causa de la presencia de material ferromagnético;
b) el uso de electroimanes de metal normal requiere una pequeña brecha de alrededor de 1 cm entre el material ferromagnético y los electroimanes. Aun con un diseño óptimo, utilizando metal normal, el costo es mucho menor cuando se utilizan electroimanes superconductores;
c) la fuerza magnética aumenta cuando la brecha se hace más pequeña y disminuye cuando aumenta, lo cual significa que el sistema es inherentemente inestable, y para lograr su estabilización es necesario que tenga un mecanismo de retroalimentación que le permita regular la corriente y, por tanto, la fuerza atractiva.


Aunque no se puede hacer ninguna conclusión negativa acerca del sistema atractivo, éste presenta, al menos, dos desventajas cuando se trata de velocidades superiores a 250 km/h. La primera es la pequeña brecha en la cual debe operar. Una razón fundamental por la que el tren convencional de ruedas y rieles no puede viajar a velocidades superiores a 300 km/h es que su posición vertical tiene que ser mantenida dentro de una variación no mayor de 2 milímetros sobre una distancia de 10 metros. La segunda razón es que el sistema es intrínsecamente inestable con respecto al movimiento vertical. Estas dos desventajas, si bien no hacen imposible la operación a alta velocidad, si requieren una gran cantidad de energía eléctrica para lograr mantener una brecha del tamaño adecuado para velocidades mayores que 250 km/h. Se ha sugerido que los electroimanes de metal normal sean sustituidos por electroimanes superconductores para que sea posible construir una brecha de mucho mayor tamaño. La contraparte de este beneficio radica en la dificultad de controlar las corrientes necesarias para estabilizar la posición vertical.


En lo que se refiere al sistema de levitación por repulsión se puede decir que presenta mejores perspectivas. Este sistema funciona como una aplicación de la ley de Lenz de inducción de corrientes eléctricas al tener campos magnéticos que varían con el tiempo, en cuyo seno existe una espira de material conductor. El campo magnético que genera la corriente inducida da lugar a un campo magnético que tiene una polaridad opuesta al campo magnético original, creándose una repulsión entre ambos campos magnéticos.
Un aspecto importante del sistema repulsivo es la disipación de energía que se da en el conductor; es una pérdida por la resistencia eléctrica del material conductor. Esta disipación depende de la frecuencia de excitación y tiene un máximo para cierto valor de la frecuencia. Sin embargo, tiende a cero conforme la frecuencia de excitación crece hacia valores más grandes.
La característica más importante del sistema repulsivo, en lo que se refiere a transportación masiva, es la utilización de electroimanes superconductores para proporcionar los campos magnéticos requeridos. Los electroimanes superconductores hacen posible generar un campo magnético intenso en un volumen grande y esto tiene profundos efectos en el diseño del sistema. Los puntos sobresalientes del sistema son:

a) La brecha entre los electroimanes y el material conductor puede ser, al menos, de una magnitud mayor que para el caso atractivo. Esto es fundamental para el diseño de operación de vehículos de alta velocidad.
b) Un campo magnético intenso, generado sobre un gran volumen por los electroimanes superconductores, puede incorporarse fácilmente a un mecanismo de propulsión y de esta manera los mecanismos de suspensión (o levitación) y los de propulsión son compatibles.

A menos que investigaciones posteriores indiquen lo opuesto, parece que no existen problemas técnicos fundamentales con este sistema. Sin embargo, se requieren algunas innovaciones técnicas antes de poder completar un diseño comercial.
El descubrimiento de materiales superconductores cerámicos con una elevada temperatura crítica hace aún más atractiva la idea de la utilización de materiales superconductores para la transportación masiva. Cuando menos ya no se requerirá enfriar a temperatura de helio líquido, bastará con la refrigeración que proporciona el nitrógeno líquido. Claro que aún sigue la búsqueda de materiales cerámicos superconductores de temperatura crítica superior a la temperatura ambiente y, si se logra hallarlos, ya no será necesaria la refrigeración del sistema, reduciéndose así los costos de construcción y operación.

5- Generación de energía. Utilización de imanes superconductores para lograr "botellas magnéticas" que sirvan para la generación de energía nuclear por fusión que no presenta problemas de desechos radiactivos, como sucede con los actuales generadores de energía nuclear por fusión.
6- Separación magnética. Ésta se aplica comercialmente para separar materiales paramagnéticos y materiales ferromagnéticos: en la industria del caolín, para separar sustancias magnéticas de la arcilla; para la limpieza magnética selectiva del carbón, o sea, separar sustancias minerales de sustancias orgánicas.
7- Limpieza de aguas contaminadas. Por medio de campos magnéticos se pueden separar las impurezas que al estar disueltas en agua quedan ionizadas y al fluir a través de un campo magnético pueden ser desviadas por éste y ser apartadas del agua.
8- Blindaje y modelaje de campos magnéticos. Puede lograrse por medio de planos superconductores que ya han sido utilizados para este fin en sistemas de producción de energía.
9- Aceleradores de mucha energía. Se han podido desarrollar electroimanes dipolares y cuadrupolares oscilantes de materiales superconductores, capaces de generar los campos magnéticos más intensos de la historia para su utilización en aceleradores de partículas de energía muy grandes.

Omar Caballero
EES
Sección 1
http://www.afinidadelectrica.com.ar/articulo.php?IdArticulo=178

Aplicaciones de la superconductividad

Puede decirse que existen tres tipos de aplicaciones de la superconductividad:

1) La producción de grandes campos magnéticos. Al decir grandes nos referimos tanto a una gran intensidad del campo magnético como al espacio en el cual se crea el campo.
2) La fabricación de cables de transmisión de energía. Aunque éstos ya se manufacturan a partir de los superconductores convencionales (no de los nuevos superconductores cerámicos), actualmente no son competitivos comercialmente con respecto a los cables aéreos normales, a menos de que cubran una gran distancia (de cientos de kilómetros). En los casos en que las líneas de transmisión deben ser subterráneas, habría cierta ventaja económica con la utilización de los cables superconductores.
3) La fabricación de componentes circuitos electrónicos. Estos dispositivos electrónicos fueron ideados originalmente con la intención de utilizar la transición de estado normal a estado superconductor como un interruptor, mas resultaron decepcionantes con respecto a los logros alcanzados por los transistores de películas delgadas y se ha abandonado su uso en este aspecto. Este panorama puede cambiar con el descubrimiento de los nuevos materiales superconductores cerámicos. Cabe mencionar que son de gran interés los dispositivos basados en la utilización del llamado efecto Josephson (que es el efecto de "tunelamiento" conocido por la mecánica cuántica, pero de corriente de superconductividad aun en ausencia de un voltaje aplicado). Resultan superiores a otras tecnologías y tienen un gran campo de aplicación que va desde la detección de señales del infrarrojo lejano que provienen del espacio exterior, hasta pequeñísimos campos magnéticos que se producen en el cerebro humano. También la corriente Josephson a voltaje cero depende fuertemente de un campo magnético aplicado, lo que lleva a la posibilidad de tener un interesante interruptor para circuitos lógicos en las computadoras.

La aplicación más importante, en cuanto a la cantidad de material empleado, es y será por mucho tiempo la producción de campos magnéticos, que se emplean, principalmente, en los laboratorios de física con fines de investigación, y es común ver pequeños electroimanes superconductores que sirven para producir campos magnéticos con intensidades del orden de 103 Oersted. Dentro de la investigación en el campo de la física, también se utilizan electroimanes superconductores para generar campos magnéticos altamente estables, útiles en los estudios de la resonancia magnética nuclear y la microscopía electrónica de alta resolución. Son muy utilizados en las cámaras de burbujas que sirven para la detección de partículas y que requieren campos magnéticos muy intensos.
Por otro lado, se espera que los motores y generadores superconductores tendrán enormes consecuencias en lo social y económico, en unos años más, pues para su elaboración se utilizan campos magnéticos intensos. También se desea utilizar electroimanes superconductores para la levitación de trenes de transporte de pasajeros o de carga.
Es conveniente señalar las propiedades que se requieren en los superconductores comerciales:

1) La mayor temperatura crítica posible. Esto se debe a que, cuanto mayor sea, más elevada podrá ser la temperatura de operación del dispositivo fabricado, reduciéndose de esta manera los costos por refrigeración requeridos para alcanzar el estado superconductor en operación.
2) El mayor campo magnético crítico posible. Como se pretende utilizar el superconductor para generar campos magnéticos intensos, mientras mayor sea el campo magnético que se quiere generar, mayor tendría que ser el campo crítico del material superconductor.
3) La mayor densidad de corriente crítica posible. A mayor densidad de corriente crítica que la muestra pueda soportar antes de pasar al estado normal, más pequeño podrá hacerse el dispositivo, reduciéndose, de esta manera, la cantidad requerida de material superconductor y también la cantidad de material que debe refrigerarse.
4) La mayor estabilidad posible. Es muy común que los superconductores sean inestables bajo cambios repentinos de corriente, de campos magnéticos, o de temperatura, o bien ante choques mecánicos e incluso por degradación del material al transcurrir el tiempo (como ocurre en muchos de los nuevos materiales superconductores cerámicos). Así que, si ocurre algún cambió súbito cuando el superconductor está en operación, éste podría perder su estado superconductor. Por eso es conveniente disponer de la mayor estabilidad posible.
5) Facilidad de fabricación. Un material superconductor será completamente inútil para aplicaciones en gran escala si no puede fabricarse fácilmente en grandes cantidades.
6) Costo mínimo. Como siempre, el costo es el factor más importante para considerar cualquier material utilizado en ingeniería y deberá mantenerse tan bajo como sea posible.

Redes Electricas


Rieles






Omar Caballero
EES
Sección 1
http://www.afinidadelectrica.com.ar/articulo.php?IdArticulo=178

Tipos y diferencias de los superconductores

Existen diferencias importantes entre los superconductores que permiten clasificarlos en dos grandes grupos. Ciertos metales; en particular los que tienen bajas temperaturas de fusión y son mecánicamente suaves y de fácil obtención en un alto grado de pureza y libres de esfuerzos mecánicos internos, exhiben semejanzas en su comportamiento en el estado superconductor. Estos materiales superconductores reciben el nombre de superconductores ideales, superconductores Tipo I, o suaves.

Por otro lado, el comportamiento de muchas aleaciones y de algunos de los metales superconductores más refractarios es complejo e individual, particularmente con respecto a la forma cómo resultan afectados en el estado superconductor en presencia de un campo magnético. A estos superconductores se les ha dado el nombre de superconductores Tipo II, o si la superconductividad se conserva aun bajo la influencia de campos magnéticos intensos, se les conoce con el nombre de duros o de campo intenso.

Para entender mejor estas diferencias, veamos cómo un campo magnético aplicado afecta a cada uno de los tipos de superconductores que hemos mencionado. Para ello describiremos brevemente lo que es el efecto Meissner-Oschenfeld.

En 1933, W. Meissner y R. Oschenfeld encontraron experimentalmente que un superconductor se comporta de manera tal que nunca permite que exista un campo de inducción magnética en su interior. En otras palabras, no permite que un campo magnético penetre en su interior. El campo magnético en el interior de un superconductor no sólo está congelado, sino que vale siempre cero.

Una consecuencia inmediata de lo anterior es que el estado de magnetización del material que pasa por la transición superconductora no depende de los pasos que se hayan seguido al establecer el campo magnético. Esta consecuencia marca también la diferencia fundamental entre lo que es un conductor perfecto y lo que es un superconductor. Por conductor perfecto entendemos un material cuya resistencia eléctrica es igual a cero. En tanto que un superconductor, además de presentar resistencia cero, presenta también el efecto Meissner-Oschenfeld. Se puede demostrar fácilmente que, en un conductor perfecto, el campo magnético tiene un valor constante, esto es, está congelado en su interior, pero no necesariamente vale cero, y esto trae como consecuencia que su estado de magnetización dependa necesariamente de los pasos, que se hayan seguido para magnetizarlo.

Para entender más claramente la diferencia entre un conductor perfecto y un superconductor; veamos qué ocurre cuando tratamos de magnetizar un conductor perfecto y cuando tratamos de magnetizar un superconductor.

Consideremos primero al conductor perfecto, esto es, pensemos que la transición nos lleva únicamente a un estado de resistencia cero sin el efecto Meissner-Oschenfeld.



Penetración del campo magnético B, en el interior de un material considerado solamente como conductor perfecto (es decir que sólo presenta resistencia eléctrica igual a cero, pero no el efecto Meissner), al pasar por la temperatura de transición.

Ahora consideremos que la transición, además de llevar la muestra a un estado de resistencia eléctrica cero, nos indica la existencia del efecto Meissner-Oschenfeld.

Penetración del campo magnético, B, en el interior de un material que es un superconductor (es decir, que presenta resistencia eléctrica igual a cero y además el efecto Meissner), al pasar la temperatura de transición.

Es necesario señalar que, si bien existe una clara diferencia entre lo que es un superconductor y un conductor perfecto, los únicos conductores perfectos que se han encontrado hasta ahora en la naturaleza son, precisamente, los superconductores. Aún no se descubren conductores perfectos materiales con resistencia cero y sin que presenten el efecto Meissner-Oschenfeld.

Omar Caballero
EES
Sección 1
http://www.afinidadelectrica.com.ar/articulo.php?IdArticulo=178

Superconductores

 La superconductividad es uno de los descubrimientos más fascinantes de la ciencia del siglo XX. Su gama de aplicaciones es amplísima, pero abarca esencialmente tres tipos: la generación de campos magnéticos intensos, la fabricación de cables de conducción de energía eléctrica y la electrónica. Dentro del primer tipo tenemos usos tan espectaculares como la fabricación de sistemas de transporte masivo levitados, esto es, trenes que flotan sobre sus rieles sin tener fricción con ellos, haciendo factible alcanzar las velocidades que desarrollan los aeroplanos. En el segundo está la posibilidad de transmitir energía eléctrica desde los centros de producción, como presas o reactores nucleares, hasta los centros de consumo, sin pérdidas de ningún tipo en el trayecto. Para el tercer tipo podemos mencionar la posibilidad de fabricar supercomputadoras extremadamente veloces.

Esto se puede afirmar, en especial, a raíz del hallazgo en 1986 de los materiales superconductores cerámicos que tienen temperaturas de transición al estado superconductor superiores a la temperatura de ebullición del nitrógeno líquido (que es, aproximadamente, de 77 Kelvin o, lo que es lo mismo, -196°C. Se utiliza la palabra Kelvin para definir la temperatura absoluta), lo que significa una gran simplificación en la construcción de los aparatos en que se emplee el fenómeno de la superconductividad, al compararlas con las temperaturas de transición más altas conocidas anteriormente de 23 Kelvin. Pero, ¿qué es la superconductividad? Es un estado de la materia, como lo es el estado líquido o el estado sólido, en el cual no existe resistencia eléctrica. Esto significa que no hay disipación de energía al pasar corriente eléctrica por un material superconductor. Además, no permite que el campo de fuerza de un imán penetre en su interior (esto último se conoce como efecto Meissner). Esta combinación de efectos eléctricos y magnéticos recibe el nombre de estado superconductor.


Su descubrimiento se remonta a principios del siglo XX, en 1911, y está íntimamente ligado a la obtención de muy bajas temperaturas (cercanas al cero absoluto) en el laboratorio. Fue el doctor H. K. Onnes (quien nació en 1856 y murió en 1926), de la Universidad de Leyden, Holanda, su descubridor. El doctor Onnes obtuvo el premio Nobel de Física en 1913 "por sus investigaciones de las propiedades de la materia a bajas temperaturas que condujeron, entre otras cosas, a la producción de helio líquido". Había logrado, en 1908, licuar el helio y este hecho lo llevó a su descubrimiento de la superconductividad en el mercurio al enfriarlo a la temperatura del helio líquido (-269°C, aproximadamente).

No fue sino hasta 1957 que pudo entenderse el origen del fenómeno, al menos en lo que respecta a lo que ahora conocemos como superconductores convencionales (para distinguirlos de los descubiertos más recientemente, los superconductores cerámicos), cuando. J. Bardeen (fallecido en 1991), L. Cooper y R. Schrieffer enunciaron su teoría de la superconductividad, que ahora se conoce como teoría BCS, en su honor. A Bardeen, Cooper y Schrieffer se les otorgó el premio Nobel de Física en 1972 por su teoría, que se basa en la existencia de los llamados pares de Cooper, que son parejas de electrones ligados entre sí y que se forman, según la teoría BCS, por la interacción atractiva de dos electrones inducida por un fonón.

En 1986, J. C. Bednorz y K. A. Müller, en un laboratorio de investigación de la compañía IBM en Zurich, Suiza, hicieron el descubrimiento de los materiales superconductores cerámicos que han alcanzado ya temperaturas de transición superconductoras por arriba de la temperatura de ebullición del nitrógeno líquido (de hecho, ya se tienen temperaturas de transición por arriba de los 134 Kelvin) y que hace ya muy atractiva y factible la utilización de los materiales superconductores, con todas sus maravillosas propiedades, en la vida diaria del ser humano. Por su descubrimiento, a J.C. Bednorz y K. A. Müller se les otorgó el premio Nobel de Física de 1987.
Aunque ya se sabe con certeza que en estos materiales (como en los materiales superconductores convencionales) existen los pares de Cooper, que son los responsables del estado superconductor, todavía no se conoce el mecanismo (o combinación de mecanismos) de su formación.

Omar Caballero
EES
Seccion 1
http://www.afinidadelectrica.com.ar/articulo.php?IdArticulo=178

EL EFECTO DE PROXIMIDAD

Este efecto, que había sido sugerido por Cooper en 1961, consiste en que las propiedades superconductoras de las películas metálicas delgadas pueden verse seriamente afectadas por el contacto directo con otros metales: si tenemos capas delgadas de material superconductor depositadas sobre un metal en estado normal podrían pasar al estado normal a pesar de estar a una temperatura inferior a la temperatura crítica y en ausencia de un campo magnético (que, como hemos visto, puede destruir el estado superconductor). Recíprocamente, si tenemos capas delgadas de material en estado normal depositadas sobre un material en estado superconductor podrían pasar al estado superconductor.
Los primeros experimentos que verificaron la existencia del efecto de proximidad fueron realizados por Meissner entre 1958 y 1960, quién encontró que una película de cobre depositada sobre estaño (encontrándose el estaño en estado superconductor) se volvía superconductora.
El argumento intuitivo para justificar la aparición del efecto de proximidad puede expresarse de la siguiente manera. Como explicó Cooper en 1961, es necesario distinguir entre el alcance de la interacción atractiva entre electrones y la distancia sobre la cual, como un resultado de esta interacción, los electrones están correlacionados en pares de Cooper. El alcance de la interacción atractiva es muy corto, del orden de 1 angstrom (del orden del tamaño de la celda unitaria en la red cristalina). La distancia de correlación para los pares de Cooper es del orden de 104 angstroms (o 10-4 cm). En virtud de esta longitud de coherencia grande para los pares de Cooper, éstos pueden extenderse considerablemente dentro de una región en la cual la interacción entre electrones no es atractiva. Así, cuando una película delgada de material superconductor está en contacto con una película de material en estado normal, la formación de pares de Cooper puede extenderse a ambas capas.
Es interesante hacer notar que las teorías existentes sobre el efecto de proximidad sólo dan una concordancia cualitativa con los resultados experimentales.
También hay bastantes dificultades en lo que se refiere a la parte experimental del efecto de proximidad. Por una parte, es difícil obtener a nivel microscópico fronteras bien definidas entre los metales. Depositar películas delgadas a la temperatura ambiente puede llevar a que se produzca algo de difusión de un material en el otro y la formación de aleaciones si los materiales no se seleccionan adecuadamente. Por otra parte, depositar películas delgadas a bajas temperaturas dificulta mucho la determinación precisa del espesor de ellas.
Omar Caballero
EES
Seccion 1

Superconductores duros

Existe otra clase de superconductores que recibe el nombre de superconductores Tipo II o superconductores duros. Estos presentan propiedades magnéticas muy diferentes a los del Tipo I que ya hemos analizado.

En 1957, por vez primera, el científico soviético Abrikosov publicó un estudio teórico en el que señalaba que podía haber otra clase de superconductores con propiedades diferentes de los estudiados experimentalmente hasta entonces. Daba como característica esencial de estos materiales el hecho de que presentan una energía superficial negativa para fronteras que separan la parte que se encuentra en estado normal de la parte que se encuentra en estado superconductor en el material. Recordemos que la energía superficial es la energía mínima que se necesita para crear una superficie en un material. De esta manera, la inmensa mayoría de los materiales conocidos en la naturaleza tienen una energía superficial positiva, lo que significa que es necesario invertir cierta cantidad de energía para formar una superficie en un material. Por ejemplo, si tenemos un trozo de metal, para crear una nueva superficie en él (por ejemplo, partiéndolo) tendremos que invertir cierta cantidad de energía. De este modo queda claro el significado de tener una energía superficial negativa entre una parte en el estado normal y una parte en el estado superconductor. Para un superconductor duro (o Tipo II) será más conveniente, porque disminuirá su energía total, tener la frontera más grande posible entre su parte en estado normal y su parte en el estado superconductor. Esta circunstancia explica la existencia del llamado estado mixto en los superconductores Tipo II.

Visto de una manera un poco distinta, se puede decir que, como un material toma siempre la configuración de energía libre total mínima, tendremos que para un valor de la energía superficial negativa suficientemente grande entre una parte normal y una parte superconductora del material, podrían formarse un gran número de regiones normales en él cuando se aplicara un campo magnético. La configuración que tomaría el material sería tal que el área entre la parte normal y la parte conductora sería lo más grande posible, lo que podría lograrse si el material superconductor se dividiera en una mezcla, a muy fina escala, de regiones normales y superconductoras cuyas fronteras fueran paralelas al campo magnético aplicado. De hecho, esta configuración existe y se le denomina estado mixto.

Es muy importante distinguir entre lo que es el estado mixto y lo que es el estado intermedio. Recuérdese que el estado intermedio aparece en los superconductores Tipo I en virtud de la forma geométrica de la muestra; que lleva a asignarle un valor del factor de desmagnetización diferente de cero. El estado mixto, por otra parte, es una característica intrínseca de los superconductores Tipo II y que aparece aun si la forma de la muestra es tal que lleve a asignarle un valor del factor de desmagnetización igual a cero. Además, la estructura del estado intermedio es relativamente gruesa y puede verse a simple vista. El estado mixto, en cambio, presenta una estructura mucho más fina, con una periodicidad de menos de 10-5 cm.

El superconductor en el estado mixto está atravesado por finos cilindros de material en estado normal que son paralelos al campo magnético aplicado. Estos cilindros reciben el nombre de núcleos normales, los cuales quedan distribuidos en un arreglo periódico triangular. Al estudiar con detalle la energía libre del estado mixto del superconductor Tipo II, se obtiene que la estructura del estado mixto es como la que se muestra en la figura 16. También se encuentra que las propiedades del superconductor en el estado mixto varían de una manera periódica con la posición.


Figura 16. Estructura del estado mixto. Éste sólo se presenta en los superconductores Tipo II y es muy diferente en su origen al estado intermedio.


Hacia el centro de cada núcleo normal, el número de electrones en el estado superconductor tiende a cero.

El material, como un todo, es diamagnético. El campo magnético aplicado recibe la oposición de un campo magnético generado por corrientes superficiales que circulan alrededor del perímetro de la muestra.

Dentro de cada núcleo normal que atraviesa al material hay un flujo magnético que tiene la misma dirección que el flujo del campo aplicado. El flujo, dentro de cada núcleo normal, es generado por un vórtice de corriente persistente que circula alrededor de él, con un sentido de rotación opuesto al de la corriente en el perímetro de la muestra.

El flujo total generado en cada núcleo por la corriente que contiene es igual a un flujón, que es un cuanto de flujo magnético. El flujón tiene un valor de h /2e = 2.07 x 10-15 Weber.

CÓMO SE MAGNETIZAN

Pasemos ahora a ver la manera como se magnetizan los superconductores Tipo II. El comportamiento de esta clase de superconductor al aplicar un campo magnético es el que se muestra en las figuras 17 y 18. Puede verse que para campos magnéticos aplicados, Ha, cuya intensidad está por debajo de un cierto valor Hc1 el material se comporta como un superconductor Tipo I. El efecto Meissner (exclusión total del campo magnético en el interior de la muestra) está presente. Cuando el campo magnético aplicado alcanza el valor Hc1, la penetración de flujo magnético deja de ser cero. Esto ocurre en virtud de que se formaron los núcleos normales con sus vórtices asociados que permiten la penetración de flujo en la muestra. Para campos aplicados con intensidades entre Hc1 y Hc2, el número de vórtices que ocupa la muestra está gobernado por el hecho de que se repelen entre sí.


Figura 17. Fases de un superconductor Tipo II, en términos del campo aplicado y de la temperatura.


Figura 18. Magnetización de un superconductor Tipo II al aplicar un campo magnético.


El hecho de que los vórtices se repelan entre sí puede ser entendido fácilmente al notar que, por las corrientes que circulan en ellos, son equivalentes a electroimanes normales con polaridades iguales. El número de núcleos normales, por unidad de área, para la intensidad dada de campo magnético aplicado, es tal que hay un equilibrio entre la energía libre del material debida a la presencia de cada núcleo no diamagnético (o lo que es lo mismo, cada núcleo de material en el estado normal) y la existencia de la repulsión mutua entre los vórtices.

Conforme aumenta la intensidad del campo magnético aplicado, los núcleos de material normal aumentan en número por unidad de área y de esta manera aumenta el flujo magnético que penetra la muestra. Así, a partir de Hc1 la magnetización tiende a cero de una manera suave, lisa, como puede verse en la figura 18. Cerca del valor de Hc2 la magnetización cambia linealmente con el campo aplicado. Sin embargo, cuando el campo llega al valor de Hc2, existe un cambio discontinuo en la pendiente de la gráfica con respecto al campo aplicado. Para valores de Ha, mayores que Hc2, la muestra pasa al estado normal.

Por otro lado, los superconductores Tipo II presentan también ciclos de histéresis de la magnetización con respecto al campo magnético aplicado. La figura 19 muestra un ciclo de histéresis típico de un metal superconductor duro. Este ciclo contrasta con el ciclo típico de un metal ferromagnético normal, como el que se muestra en figura 20.

Figura 19. Ciclo de histéresis, para la magnetización, típica de un superconductor Tipo II.

Figura 20. Ciclo de histéresis para la magnetización, típico de un material ferromagnético. Difiere considerablemente del correspondiente al superconductor Tipo II.


Los ciclos de histéresis para los superconductores duros se presentan cuando en las muestras se tienen defectos (impurezas, vacancias en la red cristalina, dislocaciones en la red, etc.). Estos defectos estorban el desplazamiento de los vórtices, anclándolos y restringiendo su movimiento.

En un material que esté casi libre de defectos y que se encuentre en el estado mixto, los vórtices pueden moverse muy fácilmente por el superconductor. Si se suprime el campo magnético aplicado, los vórtices desaparecen y la magnetización resulta reversible, lo que significa que no existe un ciclo de histéresis. Así, para materiales superconductores Tipo II en un estado muy puro y casi libre de defectos, no hay ciclos de histéresis.

Los defectos en el material superconductor al anclar los vórtices restringiendo o impidiendo su movimiento, retrasan la entrada del flujo magnético y también previenen parcialmente su salida. Esto resulta en curvas de histéresis.

Del mismo modo que existen corrientes críticas para los superconductores Tipo I, también existen corrientes críticas para los superconductores duros.

Bajo la acción de un campo magnético aplicado, de una intensidad menor que la del campo magnético crítico inferior, un material de Tipo II se encuentra en un estado en el que se da completamente el efecto Meissner y se comporta como un superconductor Tipo 1. Claro que esto ocurrirá si el material es muy puro y con muy pocos defectos. Para valores del campo entre Hc1 y Hc2, la corriente crítica es muy pequeña, pero distinta de cero. Sin embargo, la mayoría de las muestras no son perfectas y para éstas la corriente crítica es bastante grande aun para campos magnéticos aplicados entre Hc1 y Hc2, siendo su valor mucho mayor que para el caso de los materiales del Tipo 1.

La dependencia del valor de la corriente crítica con la perfección y pureza del material es de mucha importancia tecnológica porque, en la práctica, se requiere que los electroimanes superconductores soporten una corriente eléctrica lo más grande posible, manteniendo su estado superconductor.

LOS ACOPLAMIENTOS

En la teoría de Bardeen, Cooper y Schrieffer sobre la superconductividad se hace un conjunto de suposiciones sobre la interacción electrón-fonón-electrón, ahora conocido como la aproximación del acoplamiento débil. Según ésta, los fonones que intervienen en la interacción electrón-fonón-electrón no son muy energéticos, comparados con las agitaciones térmicas de los electrones a la temperatura crítica.

Por otro lado, existe cierto número de metales superconductores para los cuales la aproximación de acoplamiento débil no es satisfactoria ya que no da predicciones correctas de las propiedades de estos materiales, por ejemplo el plomo (Pb) y el mercurio (Hg). A los superconductores cuyas propiedades no pueden ser predichas con la teoría BCS (de Bardeen, Cooper y Schrieffer) se les llama de acoplamiento fuerte. El nombre de acoplamiento fuerte proviene del hecho de que para estos materiales los fonones que intervienen en la interacción atractiva electrón-fonón-electrón son mucho más energéticos que en los otros casos.

Por otro lado, el modelo de interacción electrón-fonón-electrón que se utilizó en la teoría BCS es muy simple e involucró solamente un parámetro cuyo valor tiene que ser evaluado a partir de algunos datos experimentales. Por ejemplo, puede ser obtenido a partir del valor de la temperatura crítica. Una vez fijado el valor de este parámetro, la teoría BCS predice toda clase de propiedades de los superconductores. Claro que esta predicción sólo funciona en el caso de aquellos materiales en los que vale la aproximación del acoplamiento débil.

La teoría del acoplamiento fuerte va más allá de la teoría BCS. No se introduce ningún modelo para la interacción del par de electrones que constituyen el par de Cooper, sino que se considera el conjunto de interacciones que tienen o sufren los electrones, los fonones y el acoplamiento entre ellos. Después se busca una solución a las ecuaciones resultantes que lleve al estado superconductor. El conjunto de ecuaciones resultantes, para este caso, recibe el nombre de ecuaciones de Eliashberg, en honor al científico que por primera vez las propuso.

En este punto, es conveniente hacer notar que la idea básica de apareamiento entre los electrones de espines opuestos no se modifica sino, más bien, que el formalismo del acoplamiento fuerte se extiende para incluir interacciones realistas y evitar la utilización de la interacción tipo BCS. Así, en este formalismo, el estado superconductor está relacionado directamente (y en forma realista) con los parámetros que se tienen en el estado de conductividad normal. El precio que se paga por tomar este tratamiento realista de las interacciones es que las ecuaciones que relacionan los parámetros de las propiedades de estado normal con los parámetros de las propiedades en el estado superconductor se vuelven sumamente complicadas. Sin embargo, estas ecuaciones son muy precisas.

Las propiedades de los superconductores pueden obtenerse resolviendo las ecuaciones de Eliashberg, así se explican muchos resultados experimentales que no quedarían claros con la teoría BCS. Finalmente, es conveniente señalar que para los superconductores convencionales (no para los nuevos materiales superconductores cerámicos) se entiende muy bien la naturaleza del estado superconductor.

Omar Caballero
EES
Sección 1

Los nuevos materiales superconductores

Hemos mencionado ya que en abril de 1986 se anunció el descubrimiento de unos nuevos materiales superconductores que eran cerámicos y que presentaban una temperatura de transición superior a cualquiera de los materiales existentes en esas fechas. Al escribir estas líneas la temperatura crítica de transición superconductora más alta reportada es de alrededor de 135K, bastante arriba de la temperatura de ebullición del nitrógeno líquido, que es un refrigerante de precio muy económico y fácil de obtener. También hay indicios muy prometedores de que se podrán lograr temperaturas de transición quizá por arriba de 200K.

El descubrimiento de este nuevo tipo de superconductores fue realizado por J. C. Bednorz y K. A. Müller en un laboratorio de investigación de la compañía IBM en Zurich, Suiza. Por vez primera, después de más de 12 años fue posible encontrar una sustancia con una temperatura de transición superior a 23.3 Kelvin. En su investigación leyeron un artículo científico que resulta pieza clave en su trabajo. Se debía a los científicos franceses C. Michel, L. Er-Rakho y B. Raveau, y en él se presentaba un nuevo material cuyas características de ser un óxido metálico nuevo de cobre de valencia mixta lo convertían en candidato ideal para presentar superconductividad, de acuerdo con las hipótesis de trabajo de Bednorz y Müller. La composición de este material es: BaLa4Cu5 O13·4. Bednorz y Müller empezaron a explorar sus propiedades, variando la concentración de Ba. En la primavera de 1986 publicaron su artículo anunciando la superconductividad a una temperatura de 35 Kelvin en esta clase de compuestos. En éstos, el arreglo de los iones corresponde a una geometría típicamente conocida como perouvskita y que es muy común entre los materiales llamados ferroeléctricos.

El rápido progreso que se ha alcanzado para encontrar materiales de este tipo, con temperaturas de transición superconductora cada vez más altas, ha sido realmente sorprendente. Muy pocos avances científicos, si es que ha habido alguno, han generado tal flujo de actividad científica casi frenética en todo el mundo y, al mismo tiempo, un interés inmediato y muy grande entre el público en general. Lo que la inmensa mayoría pensaba ya como algo imposible es ahora algo real y palpable: tener superconductividad a temperaturas mayores que las el nitrógeno líquido.

El trabajo de Bednorz y Müller les valió el premio Nobel de Física de 1987. Es interesante notar que es la segunda vez que se otorga un premio Nobel a temas relacionados con la superconductividad.

Casi inmediatamente después del anuncio del descubrimiento de Bednorz y Müller, muchos grupos de científicos en el mundo se lanzaron a tratar de obtener temperaturas de transición más altas. Uno de los grupos más exitosos ha sido el del doctor Paul Chu, de la Universidad de Houston, uno de los primeros en darse cuenta de la importancia del descubrimiento de Bednorz y Müller, quien se dedicó de lleno a la investigación de este tipo de materiales. Pronto encontraron que la temperatura crítica podía ser aumentada a 57 Kelvin aplicando presión al material. Tanto la magnitud del cambio en Tc, como el hecho de que aumentara con la presión aplicada eran anormales si se comparan con los superconductores conocidos con anterioridad a estos nuevos materiales. Con esto en mente, Chu y sus colaboradores empezaron a buscar maneras de simular una "presión interna" en estos materiales reemplazando el lantano (La) con iones parecidos, como el de itrio (Y). A fines de febrero de 1987, Chu anunció que había encontrado un compuesto que tenía una temperatura de transición al estado superconductor mayor de 90 Kelvin. La composición de este material está dada por YBa2Cu3Ox. Casi simultáneamente se anunció la obtención de un material de composición semejante y propiedades similares en China. En unos pocos días, con composiciones que eran variantes de la reportada por Chu y sus colaboradores, una docena de grupos alrededor del mundo informaron sobre la obtención de materiales superconductores cerámicos con temperaturas de transición arriba de los 90 Kelvin, que ya han sido preparados en la Universidad Nacional Autónoma de México; la manera de sintetizarlos es muy sencilla y puede efectuarse con la tecnología que está al alcance de los países del llamado Tercer Mundo.

Es muy claro que disponer de materiales superconductores de temperatura crítica por arriba del nitrógeno líquido es una realidad en nuestro país y en muchas otras naciones tercermundistas. También comienza a ser muy claro que con ellos el mundo no volverá a ser el mismo. Es muy probable que, una vez más, la física cambiará nuestra manera de vivir como ocurrió con el advenimiento del motor eléctrico, del transistor, etcétera.

Vale la pena señalar que las perouvskitas de cobre y oxígeno, los nuevos materiales superconductores, habían sido muy estudiadas en la última década, especialmente por Raveau, Michel y colaboradores. Gran parte de su trabajo sentó las bases para alcanzar un rápido progreso inmediatamente después del descubrimiento de Bednorz y Müller. El interés inicial por estos materiales radicó en la alta movilidad del oxígeno a temperaturas elevadas, lo que altera su comportamiento eléctrico, de manera tal que se había sugerido, como una de sus posibles aplicaciones, la de sensor de oxígeno. Muchos estudios han dejado bien claro ahora que las propiedades superconductoras del compuesto de itrio (Y), bario (Ba) y cobre (Cu) (muy ampliamente conocido como el 1-2-3, por su composición: YBa2Cu3Ox) dependen críticamente en la cantidad y en el ordenamiento de oxígeno, que a su vez depende de los detalles del proceso para su obtención.

Por considerarlo de interés, general y para exhibir la sencillez de la preparación de estos materiales, vamos a dar un pequeño resumen de la manera más usual de prepararlos.

Se trata de una reacción de estado sólido que se prepara mezclando polvos de tres ateriales: óxido de itrio (Y2O3), carbonato de bario (BaCO3) y óxido de cobre, (Cu O). Las proporciones de la mezcla son de 1:2:3, tornadas en el orden que las hemos mencionado. Se muele la muestra en un mortero (de ágata, por ejemplo), hasta obtener un grano muy fino. Luego se procede a hornear este polvo para lograr una buena oxidación. Se pueden utilizar crisoles de cuarzo, alúmina o platino. La alúmina parece permanecer inerte, siempre que la temperatura no sobrepase los 1 000°C durante demasiado tiempo. La reacción de estado sólido tiene lugar suavemente en un lapso de 10 a 12 horas, manteniendo la temperatura constante en 900°C. Posteriormente, el polvo se vuelve a moler y se preparan por compresión unas pastillas que luego son horneadas, volviendo a calentarlas por varias horas. El proceso es simple y a veces ha de repetirse varias veces hasta conseguir la formación del compuesto. Hay que tener cuidado de que la presión parcial de oxígeno durante el calentamiento del polvo no sea demasiado baja, de que no se saquen las muestras del horno demasiado pronto, pues de ser así no se encontrará la superconductividad por arriba de la temperatura del nitrógeno líquido.

Las temperaturas de transición más altas y mejor definidas se obtienen cuando la muestra se calienta en una atmósfera de oxígeno y se deja enfriar lentamente desde 900°C hacia la temperatura ambiente en un proceso de varias horas.

La preparación de la muestra 1-2-3 en el seno de una atmósfera inerte evita totalmente la obtención de una muestra superconductora.

En cuanto a las mediciones de las propiedades superconductoras de estas muestras es conveniente señalar lo siguiente.

Las caídas abruptas de la resistividad eléctrica a cero constituyen un indicador pobre, y además peligroso, de la presencia del estado superconductor. Este comportamiento, puede provenir de muchas situaciones que no corresponden a un estado superconductor y que tienen que ser cuidadosamente exploradas antes de emitir conclusión alguna acerca de si se tiene o no un superconductor. Por ejemplo, es común que se encuentre que las caídas abruptas del valor de la resistencia hacia cero se deban a problemas de corto circuitos o, en la técnica de las cuatro puntas que es tan usual para este tipo de mediciones, al problema de las fases eléctricas. En la práctica se encuentra que las muestras que han sido sobreprocesadas y que contienen muchas fases distintas del material son más susceptibles de presentar este tipo de problemas, ya que son tan heterogéneas en su comportamiento eléctrico que pueden llevar a trayectorias alternativas para la corriente entre los electrodos y a resistencias de contacto que varían grandemente con la temperatura.

Por otro lado, se sabe ya que en estos materiales se tienen pares de Cooper. En efecto, el 30 de abril de 1987 se tuvo la evidencia experimental de su presencia. El experimento se realizó en la Universidad de Birmingham, Inglaterra, siguiendo el mismo principio que se utilizó en un experimento realizado en 1961 con el mismo fin. Claro que se empleó equipo más refinado. En esencia, el experimento se refiere a la determinación de la cuantización del flujo magnético que está dada en términos de los portadores de carga del material, que resulta ser de dos veces la carga de un electrón, o lo que es lo mismo, la carga que corresponde a un par de Cooper. Sin embargo, no existe una teoría convincente, hasta el momento, de cómo se forman estos pares de Cooper.

Por otro lado, se ha reportado ya la manera en que el calor específico de estos materiales varía con la temperatura. Se produce de manera muy diferente de como sucede en el caso de los superconductores convencionales. En los superconductores cerámicos el calor específico varía linealmente con la temperatura. En tanto que en el caso de los superconductores convencionales, como ya hemos visto, se da una variación exponencial con la temperatura.

La estructura de estos materiales corresponde a la estructura conocida como perouvskita, que es una estructura típica de los materiales ferroeléctricos. Además, el contenido, de oxígeno parece ser sumamente importante para las propiedades superconductoras.

Uno de los problemas más importantes a resolver en estos materiales y que se ha estudiado poco hasta el momento, es el que se refiere al deterioro del material, pues al transferir un cierto tiempo el material deja de presentar propiedades superconductoras. El tiempo para que esto ocurra es de semanas y depende mucho del tipo de atmósfera en que se conserven las muestras. La complejidad química de los materiales superconductores de alta temperatura crítica implica una estabilidad limitada. De los sistemas de alta Tc, el 1-2-3 es el más susceptible de deterioro, y los de lantano, bario, cobre y oxígeno son de los más estables. El deterioro se puede evitar dando a los materiales un recubierta de protección de un material que no reaccione con la atmósfera circundante.

Como ya se ha mencionado, existe en todo el mundo un enorme interés por estos nuevos materiales. Hay países tercermundistas que han emprendido proyectos nacionales de superconductividad que tienen como fin el estudio y las aplicaciones de estos nuevos materiales que van a tener una tremenda importancia económica en un futuro no lejano. Dentro de esos países contamos a la India y a China. Esta última ya tiene un programa muy competitivo en el ámbito mundial. Por otro lado, varios de los científicos que encabezan actualmente los estudios de fabricación y caracterización de estos materiales son de la India, país que ha decidido invertir una parte apreciable de su producto interno bruto en apoyar su proyecto nacional de superconductividad.

Japón tiene un proyecto nacional de superconductividad desde la década de los setenta. Tal es la relevancia de estos materiales para este país. En 1987 Estados Unidos emprendió también, un programa nacional de superconductividad con un considerable apoyo financiero, tanto gubernamental, como privado.

Sin embargo, el esfuerzo económico más grande no proviene de los gobiernos de los distintos países, sino de la industria privada. Así, varias compañías industriales de Estados Unidos, Japón y naciones de Europa están realizando enormes esfuerzos por utilizar los nuevos materiales superconductores.

Cabe señalar que este descubrimiento científico, calificado ya varias veces de espectacular y esotérico, puede ahora reproducirse, con muy poco dinero (alrededor del equivalente de un salario mínimo mensual) prácticamente en cualquier laboratorio de química o física de una escuela preparatoria, o de nivel equivalente, en nuestro país. Es muy claro que, a lo largo y ancho del mundo hay una actividad cada vez mayor de toda una generación de científicos e ingenieros que se están formando ya con un bagaje cultural que incluye el conocimiento y aplicación de nuevos materiales sobre los cuales volcarán toda su creatividad e ingenio para explotar todas sus posibilidades.


Omar Caballero
EES
sección 1

Transiciones Termodinámicas y Coherencia de Fase en Superconductores de Alta Temperatura

Anisotropía

Una de las propiedades más destacables de los superconductores basados en óxidos de cobre es que tanto sus propiedades en el estado normal como las que corresponden al estado superconductor muestran una gran anisotropía. Esa anisotropía refleja aquella que se evidencia en la estructura atómica

Los datos experimentales indican que la conductividad eléctrica es mucho mayor en la dirección de los planos de Cu-O (dirección ab) que en la dirección perpendicular a ellos (dirección c). Tenemos así una resistividad ab y una c. Una forma de definir la anisotropía del material es a través del cociente de resistividades en sus direcciones principales h = c /ab. Estos valores cambian desde el que corresponde al YBa2Cu3O7 h50, considerado como moderadamente anisotrópico, hasta los que corresponden a los materiales de mayor anisotropía, como el Bi2Sr2CaCu2O8, en el cual el cociente h20.000 pone de manifiesto la anisotropía extrema que caracteriza a estos materiales. Hemos demorado el análisis de la influencia de la anisotropía, no porque su efecto sobre las propiedades que discutimos sea de carácter secundario sino por que la anisotropía esencialmente solo modifica cuantitativamente la manifestación de esas propiedades.

Para las anisotropías mayores, las propiedades físicas de los superconductores se pueden interpretar suponiendo que la superconductividad tiene un carácter cercano al bidimensional. La superconductividad se nuclea solamente en los planos de Cu-O. Las funciones de onda de los pares de Cooper en planos vecinos se superponen débilmente, permitiendo la existencia de efecto túnel (efecto Josephson) de pares entre planos. Este acoplamiento establece el carácter tridimensional del superconductor, induciendo la coherencia de fase en la dirección c.

La descripción teórica de la superconductividad en los sistemas laminares débilmente acoplados fue desarrollada por Lawrence y Doniach para describir el comportamiento de superconductores laminares convencionales, preparados artificialmente. Utilizando conceptos presentados en la teoría se puede interpretar algunas de las características cuasi-bidimensionales de los SAT. Resultados experimentales, que se discuten en este artículo muestran que aun el sistema YBa2Cu3O7 presenta características sólo esperables, de acuerdo a las concepciones teóricas aceptadas, en sistemas mucho más anisotrópicos. Creemos importante discutir resultados que se esperaría obtener en sistemas altamente anisotrópicos pues, a nuestro entender, ponen de manifiesto el comportamiento experimental, aun en sistemas que se consideran moderadamente anisotrópicos.

En una imagen laminar se considera que los planos superconductores se acoplan a través de láminas aisladoras. Dos tipos de corrientes superconductoras se pueden sostener en el sistema: las que circulan en los planos y asociadas a los correspondientes gradientes de la fase del parámetro de orden y las que, por efecto túnel, atraviesan los planos de Cu- O. En este último caso la corriente no está determinada por gradientes. El efecto Josephson explica el paso de corriente a través de junturas aisladoras, introduciendo una relación constitutiva no lineal entre la corriente y la diferencia de fase entre láminas. No puede haber corrientes determinadas por trayectorias que se localizan entre planos, pues no puede haber estados de pares con vida media infinita en la zona aisladora.



Un dibujo esquemático de cómo imaginamos un vórtice en un sistema bidimensional se muestra en la figura 2. Las corrientes se distribuyen en órbitas concéntricas sobre los planos, denominadas panqueques. Para minimizar la energía de línea del vórtice.

Los panqueques se colocan uno encima de otro. Si las corrientes no fuesen superconductoras, esta disposición determina unívocamente la dirección del campo. Como la distancia entre planos es mucho menor que la distancia l(T) 1500 Å donde circula la corriente el resultado sería una distribución de campo indistinguible de la que corresponde a un vórtice continuo. Sin embargo, hay que tener en cuenta la relación constitutiva que gobierna la corriente superconductora. Para que no circulen corrientes en la dirección del eje c y de esa forma minimizar la energía cinética y de campo es necesario tener la fase del parámetro de orden igual entre todos los planos que constituyen la muestra laminar. Esto es, la fase cambiará en 2 en cada capa tantas veces como vórtices haya pero entre planos la diferencia de fase debe anularse.

Como los fenómenos físicos correspondientes al equilibrio termodinámico se manifiestan minimizando la energía libre y no necesariamente la interna, nos vemos obligados a analizar las excitaciones en un sistema laminar. Vimos cómo la teoría imaginaba la introducción de excitaciones de flujo magnético, en forma de tiroides. Debemos pensar en formas similares que cumplan con los requerimientos de cuantificación de flujo, y que permitan introducir entropía en el sistema de panqueques. La forma más simple de introducir entropía en un sistema laminar es producir desplazamientos relativos entre panqueques en cada plano y de cada uno de ellos con relación a su vecino en el plano superior e inferior, ver fig. 2. Como al desplazarse las corrientes se introducen diferencias de fase entre planos, el desplazamiento irá acompañado de corrientes Josephson entre ellos. Como el flujo magnético debe ser conservado en forma de cuantos, las corrientes entre planos generan "vórtices Josephson" que interconectan los panqueques en los planos. Por comparación con la figura... lo que en ella eran desviaciones curvilíneas del vórtice se convierte aquí en desviaciones en forma de escalera, con dos tipos de corrientes. La energía de la excitación se compondrá de términos asociados a los panqueques y términos asociados a los tramos de vórtices Josephson.
Distinguir experimentalmente un sistema muy anisotrópico de uno laminar. es de hecho muy difícil, aunque conceptualmente son totalmente distintos. El sistema anisotrópico se describe a través de una anisotropía en los parámetros superconductores, indicando que cuesta menos energía distribuir corrientes en las direcciones ab que en c. Sin embargo un vórtice en la dirección ab tendrá corrientes superconductoras alrededor del núcleo que están contenidas en las regiones entre planos. La forma más segura de detectar un verdadero comportamiento laminar es realizar experimentos que pongan de manifiesto la existencia de junturas Josephson. Hasta ahora esto sólo se ha mostrado en los compuestos de Bi2Sr2CaCu2O8. Pese a ello, muchos resultados experimentales se pueden describir con mayor facilidad a través del modelo laminar.

Ahora que hemos discutido las características anisotrópicas de los superconductores, resulta evidente que cuanto más anisotrópico sea el superconductor más fácil será introducir excitaciones en forma de vórtices cerrados. Vemos así, la importancia que adquiere la constante C44 en la aproximación elástica del tratamiento de la interacción entre vórtices.


Fuente:  html.rincondelvago.com
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com