domingo, 27 de junio de 2010

Propiedades de los Superconductores Convencionales


El llamado estado mixto en los superconductores tipo II ha sido objeto de intenso estudio en el pasado y en el presente. El hecho de que el estado mixto es un estado de equilibrio termodinámico fue aceptado mucho después de descubrirse el fenómeno de la superconductividad y aun después de haberse conseguido la formulación teórica que explicaba tanto su manifestación fenomenológica, a través de la teoría de Ginsburg-Landau, G-L, como su origen microscópico a través de la teoría de Bardeen, Cooper y Schrieffer, BCS.

La teoría que describe el estado mixto se debe a Abrikosov y fue dada a conocer después que Feynman describió los vórtices como excitaciones del He líquido superfluído. Por otra parte, la existencia de vórtices y el conocimiento de la física que los describe constituyen la base de la ingeniería de materiales superconductores apta para diseñar aplicaciones tecnológicas.

Ni aun los científicos más audaces imaginaron, en el momento del descubrimiento de la superconductividad en óxidos de Cu, que el estudio del estado mixto en estos materiales (SAT) daría lugar a la aparición de una nueva física.

La teoría de Abrikosov considera los vórtices como objetos magnéticos que, en equilibrio termodinámico, permiten la relajación de la presión del campo magnético exterior, excluido por las corrientes Meissner. A partir de un campo magnético "crítico inferior", Hc1(T), la menor energía libre del superconductor corresponde al estado mixto que se genera mediante la penetración de vórtices. La cantidad de vórtices, en equilibrio, está determinada por las dos variables termodinámicas que suele adoptar la teoría, el campo magnético, H, y la temperatura, T. Esto no es siempre correcto debido al carácter magnético de la superconductividad. Al analizar resultados experimentales es importante considerar los efectos de la forma de la muestra, para asegurar cuáles son las variables termodinámicas a decuadas al experimento que se estudia. De hecho, la mayoría de los estudios de los SAT en monocristales se hacen en muestras con geometrías donde la forma puede jugar un papel importante.

Las propiedades esenciales que caracterizan el estado superconductor se ponen de manifiesto al estudiar el comportamiento del estado mixto, en su forma elemental: un vórtice aislado. El vórtice tiene asociado un campo de velocidades, v(x), de trayectorias concéntricas (en el caso isotrópico son circunferencias) con una divergencia de la intensidad de la velocidad en una línea que definiremos como eje del vórtice. El campo de velocidades se extiende hasta distancias caracterizadas por la longitud que determina el rango de variación de campo y corriente, (T).

Cuando la temperatura es menor que la crítica, Tc(H), el parámetro de orden termodinámico (X) de la teoría de Ginsburg - Landau adquiere valores finitos, indicando la existencia de una densidad finita de pares de Cooper, dada por |(X)|2= ne. Como consecuencia, el campo de velocidades tendrá asociado una densidad de corriente superconductora J=|(X)|2 2e v(x).

La energía cinética de los pares de Cooper aumenta con el cuadrado de la velocidad al aproximarse al eje del vórtice. El aumento de energía cinética compite con la energía de formación de los pares. El mantenimiento de la densidad de pares correspondiente al estado libre de vórtices se hace inestable a partir de alguna distancia del eje del vórtice. Como consecuencia de esto, el parámetro de orden depende de la coordenada, disminuye con el incremento de la velocidad y se anula en el eje del vórtice. El incremento de energía cinética y la depresión de la densidad superconductora en un núcleo alrededor del centro del vórtice es el requerimiento necesario para disminuir la presión de campo magnético, correspondiente al estado Meissner. El rango de variación espacial de (X) está determinado por la longitud de coherencia (T) del estado superconductor. La forma general de un vórtice la esquematizamos en la fig. 1.


Figura 1. Esquema de la variación espacial del parámetro de orden y el campo magnético en la proximidad de un vórtice.

En la teoría de G-L se define un parámetro k=(T) / (T), que caracteriza las propiedades del material superconductor. Es evidente que cuanto mayor sea (T) con relación a (T) más fácil resultará la creación de vórtices pues se disminuye la presión ejercida por el campo exterior sin necesidad de perder energía de condensación de pares, salvo en el volumen determinado por 2(T) x L, donde L es el largo del vórtice. Los SAT se caracterizan por tener valores muy altos de k (>>100).

Cuando se aumenta el número de vórtices en el superconductor, como respuesta al incremento de H, se ponen de manifiesto interacciones repulsivas entre vórtices, de carácter electromagnético, que dan origen a configuraciones geométricas periódicas de la distribución de vórtices, con orden topológico de largo alcance. Se demostró que la red hexagonal minimiza la energía del conjunto de vórtices en un material isotrópico y su presencia ha sido verificada experimentalmente (ver fig. 2).

FIGURA 2


Imagen de la red de vórtices obtenida mediante decoración magnética de Bitter en un monocristal de 2H-NbSe2. (gentileza Flavio Pardo)

La presencia de vórtices y su distribución periódica en sistemas perfectos permite vislumbrar algunas de sus propiedades. A temperatura nula los vórtices en la red ocupan lugares de alta simetría y el orden de largo alcance topológico minimiza la energía de interacción. Tal como ocurre en una red atómica, desviaciones de las posiciones de equilibrio aumentan la energía interna y dan lugar a fuerzas de restitución que, en este caso se manifiestan en variaciones locales de las corrientes y del parámetro de orden. Si los desplazamientos de los vórtices son pequeños la respuesta de fuerzas será proporcional a los desplazamientos. Los coeficientes que relacionan desplazamiento con fuerza son las constantes elásticas de la red de vórtices, que dependen de temperatura y campo. En el caso general las constantes elásticas son tensores. Debido a la simetría de la red de vórtices, intrínsecamente anisotrópica aun para el caso de materiales isotrópicos, la constante elástica asociada al desplazamiento de la dirección de los vórtices con relación a la del campo, C44, difiere de la de cizalladura, C66. Las variaciones de densidad de vórtices están determinadas por C11.

Para poder calcular las propiedades de la red de vórtices es necesario tener ecuaciones que describan las variaciones espaciales de las corrientes eléctricas y del parámetro de orden. La adecuación de la teoría de Landau de transiciones de fase de segundo orden a la superconductividad dio origen a la teoría G-L, que provee una excelente descripción de las propiedades de los superconductores convencionales. La energía libre debe describir las propiedades termodinámicas y electrodinámicas, por lo cual el cálculo del parámetro de orden (X) y de las corrientes eléctricas debe hacerse en forma autoconsistente.

En el marco de la teoría G-L, la minimización de la energía libre con respecto a los dos parámetros que la describen, (X), y el vector potencial magnético A(x), da lugar a dos ecuaciones diferenciales acopladas, cuyas soluciones proveen los valores de los dos parámetros que describen la termodinámica de equilibrio. De esta forma se obtiene la nueva ecuación constitutiva del estado superconductor, relacionando las corrientes con el vector potencial. Con la ecuación constitutiva y mediante las ecuaciones de Maxwell se encuentra la respuesta electromagnética que, dentro de la aproximación de campo medio, describe las propiedades superconductoras del material.

Para comprender mejor el alcance de la teoría de G-L vamos a especificar los parámetros termodinámicos que determinan el estado superconductor en presencia de un campo magnético exterior H, los campos críticos que determinan su diagrama de fases H-T y la ecuación constitutiva entre campo y corriente.

Omar Caballero
Electrónica del estado sólido
seccion 1

No hay comentarios:

Publicar un comentario